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ZENER OSCILLATIONS

I

1. INTRODUCTION I
The question of the existence of Zener oscillations has remained '

controversial for more than forty years. Experimental observations

indirectly supporting their existence have been reported by Koss and

Lambert (l)*, but so far this widely quoted work is the only credible

experimental evidence. I
In the present report we continue the Zener oscillation studies

begun in the 1980 progress report on Semiconductor Millimeter Wave-

length Electronics (2). In that report an extensive critical review

of band structure dominated carrier dynamics was presented. It was

concluded that the phenomena limiting the realization of Zener oscilla-

tions are scattering and interband tunneling. A discussion and numeri-

cal estimate of the tunneling probability indicated that this is not a

serious limiting factor, and it was concluded that Zener oscillations

would require an adequate lengthening of the scattering lifetime.
3

The motivation for studying Zener oscillations is their potential

of realizing a device for generating tunable submillimeter radiation.

Like any other effective electronic generator of radiation, a practical A
*The numbers in parentheses in the text indicate references in the-

Bibliography.



-2-

Zener oscillator will have to rely on phase coherence of the electrons

coupled to the radiation. A possible scheme for obtaining the required

phase initialization and phase focusing has been suggested by D. L.

Rode (private communication) and will be reported on elsewhere. In

the present work we discuss the theoretical aspects of such a device

from the viewpoint of quantum theory. Specifically we examine an elec-

tronic state analogous to the coherent states of a harmonic oscillator

("Glauber states"(3)) with a wave function whose mean square position

and momentum uncertainty product approaches the minimum uncertainty

level. Such a state can be described by a wave packet of states of

the conventional representation. The dynamics of such a wave packet

must be determined.

In view of our goals we have inquired into the physical meaning of

several existing solutions of the problem of an electron in a crystal

in the presence of an applied electric field. We begin by quoting the

standard theoretical methods and their results. No derivations are

given, since they can be found in the 1980 report and in references

(4), (5), (6) and (7).

Based on the interpretation of these results, we propose two kinds

of wave packets to represent coherent band-electron states. Further-

more we calculate absorption and emission probabilities of Zener os-

cillations in a one-band scheme. These probabilities are directly

,elated to the spectral analysis of the Zener oscillations in a given

band structure. We report on a computation of these spectral compo-

nents for a variety of applied field directions for the conduction band

of GaAs.
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2. THEORETICAL BACKGROUND

The standard technique for studying the electronic properties of

crystals is the one-electron model. In such a model the electron is

viewed as moving in an average periodic potential. It is assumed that

in an applied electric field this average potential is unaffected.

This approximation is based on the relative weakness of the applied

field when compared with the effective fields of the lattice bonds.

There are several different approaches to the solution of the one

electron model equations in the presence of an applied electric field.

In all cases the Schroedinger equation to be solved is

dr.) ,(r-t 4,r,t)

(choosing the sign convention e - -lel).

For our purpose it is useful to show the solution in each of three

different representations: The Bloch, or crystal momentum, Wannier or

lattice site; and the kq representation. G;

2.1 FORMULATION OF THE SCHROEDINGER EQUATION IN THREE REPRESENTATIONS

2.1.1 Bloch Functions

A natural basis for crystal electron wave functions is the set of S

Bloch functions n(k,r). The Bloch functions are eigenfunctions of the
-2

periodic Hamiltonian H =-+ V(r), and they are labeled by the two
0 2m

indices k,n. The index n is the band index defined by the Hamiltonian 5

H (k,) - E (k), (k,r).
On n n

The index k is defined by the lattice translation operator T(am) 5

exp(ip-am) through
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T~a iJ,(kr = i(ka)j k)m n n

The indices n, k are good quantum numbers since they are generated by

commuting operators

[T(am), H0 1 0.

The presence of the field term ee.r in Equation (1) breaks the periodi-

city of the Hamiltonian and k is no longer a good quantum number.

Therefore we write the solution to Equation (1) in the Bloch function

representation as

t) F f dk n k,t) n (k-

n

If we choose the x axis to lie along the field e, substitute in the

Schroedinger Equation (1), and evaluate the matrix element of the posi-

tion x that appears in the field term (Appendix 6.3)

<nkIxln',k'> = i6nn 6(k'-') + X ,6 (k -kP) (2)
nn aknn
x

we obtain the equation of motion of the envelope n

[E:k)= 2Rie/ * ( 'r Ld U (k' er ' ~dr 3

where X (21r)i u*k) L u (kT)dr
ne 0 f n k e~x

is the polarization matrix. The integral is taken over a unit cell,

with a the volume of the cell.

2.1.2 Wannier Functions

Another useful representation is formed from the set of Wannier

functions, defined in terms of the Bloch functions by



-5-
I

where R is a lattice site vect, r.n "

In the Wannier representation the solut4on of Equation (1) is

CIr, t) - b ( tW(-
n m '

where b (R ,t) is a solution of

fE (-iV)-i h b (r, t) - r (R,,R)b,(R,,t) U _ 0
n a Y-R n ' niY nn m mn i

m m (4)

where m (RR - f W , C-,)erW (r-R )d.

whe n m M( n, n m

2.1.3 The kq Representation

A representation specifically designed for a periodic medium which

suppresses the band index (its basis functions, in terms of the Bloch

or Wannier representations, are sums over all the bands) is generated

by the translation operators in the direct and reciprocal lattice. S

These operators T(an) n exp(ip.a n) and T(b) = exp(iq.b ) are a com-

plete set of observables [an,b = 2T6 and they define wave functionsn in rim

with

3 n n
V(2w) R

where a is a lattice vector.

t
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In the kq representation the solution of Equation (1) is

f f(r,t) - f dqCk,q,t)-()

where C(k,q,t) is a solution of

2 .q2 + V(q) - e.(i -+ C(k,qt) = i b C C-k,t) (5).

2.2 THE ACCELERATION THEOREM IN THREE REPRESENTATIONS

The solution of the Schroedinger equation can be carried out in

each of these representations. The full solutions must, of course, be

identical, but each affords a different view of the problem. This will

enable us to gain physical insight, to choose superpositions of states

to correspond to various initial and boundary conditions, and to make

appropriate approximations.

The solution of Equation (1) and of its equivalent forms Equations

(3), (4) and (5) is the motion of an electron in an electric field,

thus an acceleration theorem. We shall take up the solution in the

three representations in the reverse order to their introduction,

because in that way we can proceed from the most general and abstract

to the most intuitive form of the acceleration theorem.
4

2.2.1 The kq Representation

In this representation, generated by the translation operators in

direct and reciprocal space, the coordinate and momentum operators are

P4Ur r 13 + q

These operators are defined within the unit cell of their respec-

tive spaces, but because the translation operators contain an arbitrary

phase factor 2nT, they are not localized in a particular cell and act

4I
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equally in all the cells of their space. Another way of stating this

property is to say that p-,- places the electron on an infinite point

lattice in both direct and reciprocal space, with the lattice point

exactly localized both in the unit cell and in the Brillouin zone.

does not belong to a band; indeed the exact localization within the cell

is possible, in the language of the more familiar Bloch or Wannier

representations, because - contains a superposition of all the bands.

For this same reason, the acceleration theorem, deduced 
by Zak in

the form of a Heisenberg operator equation of motion

dk i i-

is exact and not a one-band approximation. It is, of course, this

property that prompted Zak to invent this representation.

The Heisenberg operator k(t) is
i

e H(t-t H(t-t

The physically meaningful crystal momentum is the expectation value

<C(rt 0)Ik(t)],(r,t 0)> -<(rt) [i[(T,t)>

2.2.2 Wannier Representation

The Wannier representation leads very directly to a very useful

correspondence between classical and quantum dynamics of the crystal

electron quasiparticle. In this representation k is an operator

(i grad -). If the interband and nonlocal terms n 0 n', m # m' are

dropped in Equation (3), the one-band Schroedinger equation for "weak"

fields is reduced to
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[En (-i) -1 ( + (r, t) =0

Here E (-iV) is the modified kinetic energy operator that includes then

effect of the periodic crystal potential, and the envelope function

b n(r,t) can be viewed as describing a wave packet of Wannier functions.

Its trajectory is given by the equivalent classical Hamiltonian

E (-iV) + ec-r - E (k) + ee-r

This correspondence recognizes t k as a crystal momentum, and leads to

the classical Hamilton equations of motion

- H 3E (k)

rift -E 1 n

p = k=- =ee

which can be integrated to give the classical position of the electron

r(t) - r(t O) - [En (k(t)) - E(k(to))] (6)

with 1Z(t) - i(t O  = - (t-tO)

It should be remembered that this elegant deduction of the Zener

oscillation dynamics is based on a wavepacket formalism in a one band

scheme.

2.2.3 The Bloch Representation

The Bloch, or momentum representation leads very directly to a

group of intuitively appealing results on Zener oscillations. Starting

with Equation (3) we can obtain an exact equation of motion for the

probability density of the momentum distribution
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x n

which is satisfied by any arbitrary initial distribution G(k) that

changes with time according to

Z I1n(kl 2 " G(k -e , ky, k).

n

Hence for any initial superposition of momentum eigenstates, the expec-

tation value of the momentum, defined as
S

<i> = EfI n(k)2l dk
n

behaves as

eS

<k (t)> = <k (to)> + L (t-t

Note again, as in the kq representation, that this acceleration theorem

is obtained without neglecting interband terms; unlike the classical

trajectory of Equation (6), the time dependence of the crystal momen-

tum is unaffected by interband mixing.

In a one-band model Equation (3) becomes

[En (k) - eEXn-iec 10 = i b

We can write, for the polarized band structure

E(1) (i) - E(-k) - eeX
ni nn

Then the solution can be written

-E (t)

On(T,t) 0 * (k)e 4 V

with
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(k)  -6(k-kyo k-k )exp [Ek d (7)

where K is the length of the reciprocal lattice vector lying along the

field direction (chosen as the x axis). (If the field direction is a

principal lattice direction, K is the "diameter" of the Brillouin zone

along the x-axis).

The wave function 0. is periodic in the extended Brillouin zonc,

traversing a phase shift of 2rrv radiansas k traverses K wave numbers.x

Thus the energy eigenvalues are

K@ee 1EV 27vK +K Jf ' dx
.4 0

These energies have been called Wannier levels or Stark levels,

and they form the "Stark ladder" which has been the subject of so much

controversy. We use the terminology Stark levels for and Stark

functions for V , to avoid confusion with the Wannier functions

W(r-Rn).

It is possible to form a superposition of all the Stark states of

a crystal with equal weight for each state in such a way that the re-

sulting superposition has a definite-albeit time-dependent-value of k .x

We only indicate the result without giving any of the intermediate

manipulations:

Et
'" (r,t) = ~ (T e  h (k,r)dk

ect

-K e' t,k y ~k ) exp f c dkxE(7)] (8)

where

I
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.'( t,kyo kzo)" U Ck(t),T)ei t)'

is a "time dependent Bloch function". The designation "Houston func-

tion" is used for both * (r,t) and k(t),r).

2.2.4 Summary

By reviewing these three approaches to the acceleration theorem we

have attempted to emphasize the relation of the dynamical and geometri-

cal aspects of the electron motion in a crystal. The time dependence

of the crystal momentum is an exact result, independent of the one-band

approximation. The Stark ladder and the localization of the electron

in a correspondence principle sense does require this approximation.

This must be distinguished from the localization in the kq representa-

tion which has no classical analogy. We will study questions of charge

localization below, after a brief mention of the current literature. 0

2.3 RECENT LITERATURE

The quasiclassical electron dynamics, Zener oscillations, and their

quantization in a Stark ladder of energy levels are seen to follow in S

straightforward fashion from a one-band scheme. The controversy about

the observability of Zener oscillations or the Stark ladder revolves

about the justifiability of neglecting the interband terms X ,
m, n# m'

The Stark ladder could be destroyed by the broadening of the Stark

levels due to the finite lifetime of the states.

This question has been debated in the literature for more than

forty years. The only credible observation that has been reported (1)

is the existence of a "staircase" modulation of the Franz-Keldysh ef-

fect as a function of the field. This modulation effect of the field

on the interband absorption was predicted by Callaway (8), and while

,1

S.-- - - - - - - - - - - -
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its verification of the Stark ladder is indirect, it appears difficult

to account for on any other basis.

Most of the calculations in the current literature appear to be in

agreement that in crystals with moderate or wide bandgaps the contri-

bution to the Stark level lifetime due to the applied electric

field-that is to say, the tunneling probability-is small. In one of

the most recent such calculations (7) interband tunneling was studied

using a time evolution operator. The wave function used in the calcula-

tion includes the tunneling process and therefore the broadening of the

Stark levels is directly computed. Results were obtained for

nearly-free-electron approximation in a two-band scheme representative

of GaAs. The broadening, calculated to second order in the field, is

6 -1
found to be neglibible for fields up to 10 V cm

The theoretical evidence thus supports the reality of the Stark

ladder. It suggests that the limitation of the observability of Zener

oscillations is set not by the intrinsic lifetimes of the energy levels

but is to be ascribed to scattering. The one-band approximation may

be accepted as well supported by the current best estimates, and our

further discussion will be based on it.
4

.

4
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3. PHYSICAL INTERPRETATION: LOCALIZATION AND CORRESPONDENCE

PRINCIPLE

3.1 THE HARMONIC OSCILLATOR ANALOGY

In the "moderate" fields under discussion (e<106V cm-1), the

classical excursion Ax of the electron oscillation orbit for Zener

oscillations is AE n/e, where AE is the width in energy of the nth

-6band. Since AE is a few eV, t&x>10 - cm, that is to say, many times the

lattice parameter a. Inspection of the form of the Stark function

of Equation (8) shows that the total phase shift experienced by
V V

as k traverses the Brillouin Zone is of order Ax/a, so is manyx

electron wavelengths long.

Thus a Stark level in a moderate field is similar, in this respect,

to a coulombic or harmonic oscillator energy eigenstate with a large

quantum number. A particle in such a high energy eigenstate is local-

ized to the extent of having an appreciable probability of being found

only where its kinetic energy is positive (near the nucleus or near

the potential minimum respectively). Within this range, its probability

density is time-independent.

However, a particle with this much average energy can be localized

more closely by forming a coherent superposition of several adjacent

energy states in such a way that at some particular time their wave

functions all add in phase at some particular point along the orbits,

and cancel elsewhere. Such a localization would not in general be

expected to persist, but in some form it underlies the correspondence

principle for the formulation of classical orbits from quantum theory.
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For the example of a harmonic oscillator the theory of such coher-

ent superpositions of energy eigenstates is highly developed, since it

can serve as the basis of the quantum coherence theory of light. Har-

monic oscillator eigenstates Ia> of the destruction operator a have

wave functions of Gaussian shape with a localization as narrow as that

of the oscillator ground state, and they oscillate in the quadratic

potential with the oscillator frequency, and without spreading. Any

narrower localization requires a wider range of energy eigenstates In>

and will cause the coherent state to spread with time. The states Ia>

have minimum uncertainty products for simultaneous measurement of

position and momentum.

Our purpose here is to initiate a similar study of coherent states

of a crystal electron in an applied field, to serve as models for the

quasi-classical electron executing Zener oscillations. Relying on the

conclusions outlined in Section II above, we will confine our attention

to one-band states. We have available two types of one-band wave func-

tions: Houston functions and Stark functions, eigenfunctions respec-

tively of momentum and of energy. We work out the relations between

the two types of wave function, and the localization of electrons in

each. We then discuss the localization of electrons in wave packets

formed from superpositions of eigenstates, and an approach to the con-

struction of minimum uncertainty wave packets. We also compute transi-S
tion probabilities between Stark states, since they are related to the

emission and absorption of Zener radiation.

3.2 HOUSTON FUNCTIONS

A crystal electron generated by thermal excitation across a band-

gap (e.g. phonon absorption) is unlocalized, and so it is not

p
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unreasonable, in the presence of a field, to represent it by a Houston

function (see II 2c above)
/t

- E () (k(O) + et-- )dt'

r-k(O) + e

ct (o) + et
fk x E(1 (k,) dk,

- (k ( ) + -_ t r ) e k (O )

where we have used the acceleration theorem tik = ec; this explicitly

represents the Houston function as a Bloch function with time-dependent

label k and phase, and shows that it can be labeled by the initial

crystal momentum k (0).
x

Although the electron is unlocalized, in some sense it must be,

in the presence of the field, in accelerated motion, and the Houston

function should be capable of describing this motion. The most direct

approach to a description of the motion, the computation of the expec-

tation value <x> of the position, fails because its matrix elements are

singular, as seen from Equation (2). The divergence arises from the

6- function normalization of the Houston functions which we can write

in the form

<k'(O), r lk(0), r> - S(k (0)-k'(0));
x x x x

to obtain physically meaningful results, it is useful to avoid such

singularities except as limits of finite procedures.

6- function normalization is commonly used for wave functions of

unlimited extent such as the plane waves representing free particles,

or Bloch functions, or Houston functions.

.----.-. ~~~~~~.... . . -,-.....- - - - - -
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For all these functions one could argue that a normalization in a

finite volume V permits easy physical interpretation, through the quan-

tization of the label k introduced by periodic boundary conditions.

This leads to a normalization

!-
<kllk> " kkl*

and expectation values such as <k'IxnIk> are easily computed. However,

such "box normalization" hampers the description of the time-dependence

of k for accelerated particles, and indeed the postulation of periodic

boundary conditions is questionable at best in the presence of a field

which destroys the postulated equivalence of the boundary points.

Therefore it is necessary that we deal with the finitely

non-normalizable infinite-crystal Houston functions.

The method for avoiding divergent expectation values can be

developed by analogy with free-particle plane waves. Here we have

f"'X -ikex n~ ikx .nan
<k, xnjk> f dxe x i ) e = i 6(k-k')

which is meaningless for k - k'. A meaningful expression can be ob-

tained, however, by using the states jk> as a basis for the construc-

tion of normalizable wave packets.

A wave packet

*(x,t) - f f(k)4(k)dk

has the norm
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q p(x, t) ~(x, t) > f fdx fdkf(k') p(k') f dkf (k) 1p(k)

f fdk'fdkf k') fk) k-k')

f Jdkf*(fk)

and so can be normalized by normalizing f(k); evidently the same proce-

dure will yield convergent expectation values <4(x,t)I x nbP (x,t)>.

We shall make use of the Gaussian distribution

(k-k0)

fk ) 1 &/2 -1/4 4a 2
fa(k-k0 )  a -1(27) e

normalized to

J i d2f(k-k) ~fdkN (k,),a) -1.

The notation N(k0 ,a) stands for a Gaussian with mean at k0 and variance

aI.

The Gaussian free particle wave packet is

It
2

0 (x,t) f Ofdkf (k-k0)e-ikx e-im 
t

-,m

The behavior of such a wavepacket is well known; at t-0 it &.as the

form

-ik x -02 x2
(x 0) - 2 (81a2)i/4 e-0 e

and the time-development of the wave packet is well described by the

expectation values
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<k> = k0

2 2 2
<k > = k0 + a

.0

<x> =kt
m

22
<x2> = ft t2 + --

2 2
m 4a

From these expressions one concludes that the centroid of a

gaussian wavepacket moves according to Newton's law and is unaffected

by the momentum uncertainty, and that the uncertainty of its position

is inversely proportional to the momentum uncertainty. Moreover, since

this observation holds no matter how narrow the packet, it is not

implausible to pass to the limit of an infinitely narrow packet, that

is to say, to a momentum eigenstate 1k0>, and to attribute to a parti-

cle in such a state a quasi-newtonian motion, albeit with an infinite

position uncertainty.

This argument can be made more formally, and we will now shew that

it is possible to construct physically meaningful wavepackets which are

equivalent to plane waves, Bloch states, or Houston functions, and

which form sets of orthogonal basis states. The procedure is to gene-

rate these states from gaussian wavepackets whose variance approaches

zero so that

lim4 0 ifa(k-k0)12  -

To begin with, we demonstrate the orthogonality of the states. For any

wave packets

1t
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(kO ,x, t) =f 'dkf (k-kO) 1k>

of 6-function normalized states satisfying <k'ik> = 6(k'-k) we have

J dWx*(k ,x,t)*(k 0,x,t) =

.rfdk'fdkE* (k' -k;) <k'lIk>f (k-k0 )

dkf* (k-k;) f (k-kO)

and if we use gaussian wave packets

(k-k)
2

f a(k-k0 ) - (27r)-/4 a
-1/ 2 e 4 2

to form packets p a(kolx,t), then

(k-k0 ) 2+(k-kO) 2

< k ' ,x ,t jk o x , t > = d x = ( 2 ) 1 / 2 -1 
-4 0

<,;-,o>= {,Tr-<°;} a eo
00)-k2 k- ( 0 k) ]2 -k___2
B 2  22 802

= (27r )- /2 a
- I  e J e dk ffi e

so that

lim f i,:ipdx 6kok •

This demonstrates the orthogonality of the states. It also pro-

vides a basis for the evaluation of matrix elements in which singulari-

ties can be avoided until a final limiting procedure.
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Thus we confirm the validity of the informal interpretation

advanced above of the free particle motion represented by a momentum

eigenstate. We can provide a basis for a similar treatment of the

motion of an unlocalized crystal electron by a similar development in

Bloch functions for the field-free crystal, and Houston functions in

the presence of a field.

The results for Bloch functions (k,r) = eik u () can be

worked out using the results of Appendix 6.3. We find

<4 o(ko)IP GO(ko)> - 1

<P (k0) IklP0(ko)> =k 0

< P (k )1k21P ~o(k 0 )> = Jim (a2 +k) k0
o-*1J 0 a 040 00

<q (k )x (k>k t 3E (k 0 )a-k0 0 a-00 nn0 ) +0 f-Dk, x

a-o(ko )IX2 YO(ko)>_I<, o(k0 ) IXI U- 0(k0 )>12

' = im -- + z l(k Xn(k0 2 ] O

we 0k -k dr

x x

and Q is the volume of a unit cell.

The calculation for Houston functions wave packets differs from

that for Bloch functions only in that the time dependence of the Bloch

function

4
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exp [- E(k)t]

is replaced by

ect

exp -x E dk

ek k X1kx x

so tha th diffrentatio iihrepctt x A __ f + - ep x E()dk)dkx

L~~ + eEctxE (1) kx + -rz E)(k x p - E (k'()dk' x

and we find, for infinitely narrow gaussian wave packets starting from

rest

<X> 1FE(r:t (I 0
a- O ec h nn

2
a-*J

Thus we finally verify that in the abseace of collisions or tun-

neling a Houston function does indeed describe Zener oscillations with

a precisely defined phase and completely undeterminate position.

We originally constructed the Houston representation as an

equal-weight superposition of all the Stark states. It is of interest

to invert this procedure and determine the superposition of Houston

functions that is needed to form a Stark state.

* . * ____________ -~-~-----*------~---- _________ ________
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The Houston function

fk (0) + -- EW (k)dk'
i x x

P(r,t) = ,r-I-Je k (0)

can be written in the form

x E (I  ( 'dk'
(r,t) = v dk6 ( k -k (0) _ect (k,r)e k

-- x x ti ~ x(0

and with the Fourier series representation for the 6-function

K k k()exp i k -(10

a wave packet of Houston functions with weight f(kx (0)) becomes

fdkx(k,)fdkx()f(k(0)) ep k-k(0)-i2 ect

K V

t fo (1)-i('edoikx (1)
-j o E (l-')dk' - kI E (')dk'
ecx x

*e kx(O) e 0

-i2rr

2 -rv k (0)

f dk(k) v(k,t) J dk x(0)f(k x(0))e X

V

4fkx(O) ()
e, kJ Z ( ) E l(k')dkx

where we have recognized the runctional form of the Stark wave func-

tions as in Equation (8).

We see that a wave packet of Houston states p(kx0,r,t) of the

form

fdk ()f(k C0))qW(k 0 ,r,t)

x 0
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is equivalent to a wave packet of Stark states fdko,(k,t)p(k,r) of

the form

i f k(0) (1)-i27v

61.E k )dk' -p--- k (0)
if g(v) = dk (0)f(k(0))e e' kx e Xf x

the coefficient in the Fourier expansion of

f(k (0) )exp, [ikx E(1 )(k')dk'j.
0

Therefore to construct a single Stark state, say with index v0, energy

E , we must have g(v) = 6 which will result ifV 0  vv0

r- i kx(0)r 2r

f (k (0)) = exp k x ()E(1 )(P') dk']exp '2T k (0)1
x Lec f10 x] [ K x j

3.3 STARK STATES

We have introduced the Stark states in Chapter 2, 2.1.3 above, and

related them to the Houston states in that section, and in Chapter 3,

3.2. The wave function of a Stark state is localized by the require-

ment that the kinetic energy of a carrier in such a state be

non-negative. In the present section we shall study the details of

this localization.

Apart from tunneling, the Stark states are stationary states of

crystal electrons in an applied field. The question whether a crystal

has exactly stationary states in a field (the existence of "closed

bands") has been discussed by Wannier and Fredkin (9), but this ques-

tion has little bearing on the problem we are addressing. We can view

tunneling as a perturbation that produces an energy uncertainty in the

Stark levels. The magnitude of this uncertainty affects the
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observability of the Stark ladder, and it has been argued (4) we believe

incorrectly, that it is large enough to destroy the ladder. Indepen-

dently of this argument, however, we shall show that in the moderate

fields of interest to us, the carrier localization is negligibly

affected by the energy uncertainty.

The wave function of a Stark state can be expressed as a super-

position of Bloch functions
- i

(r,t) = e t V r

K12
where (r) f/ 2  dk (k)p(Z)

and 0 (k) exp[ -(Ekf xE (P)dk) •

As in Equation (7), we assume definite values of k , k . Such a choice

is in no way restrictive, since k = (O,k ,k ) is conserved throughout
y yz

all computation.

The Stark state *n (F) is an eigenstate of the one-band Hamilto-

nian of the nth band

H n~n( E vn~n(r).

More precisely, this expression means that the E are eigenvalues
V

of the Schroedinger equation if the interband terms are neglected. The

statement can be interpreted to mean that *,, E are the eigenfunctions

and eigenvalues of a truncated Hamiltonian H whose (field-free Bloch)n

eigenfunctions have X mn-, mn. In keeping with this interpretation,

it can be shown that the %, are orthogonaland form a basis (Appendix
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6.1). We also show in Appendix 6.2 that the Stark levels E give the
V

expectation values of the complete Hamiltonian

< v(r,t)IHtotal IV (-r,t)> - EV

where H total includes the untruncated crystal Hamiltonian and the

electric field

2
Roa 2- + V(7) - ecx.Htotal 2m

The energy eigenvalue EV of the Stark state VP is given by

E 2rvee +IJE (lck)dk1 f /2 1 d

S27rve__+ <E(1)>
K K

where we have defined the notation

<f> =fdk.K -K/2 x

The localization of the state is described by the expectation

value of the position <vlxlv> and by its root mean square deviation

Ax- [<VIx21v> - vIxlv>12]1/2

We show this calculation in detail, since it is useful in the

study of Stark state wave packets.
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v> ff k/ 2 .fV(D dkV(k-k' (i

fK12 r /2 (1
Jdk * *(k') (E E W)

= JfK12 [ 2 (E - (- + X mk-) dk

I-K /2 c x n

+ <X >(9)
K nnicl

where we have used 0v*Ov =

S imilarily

<vix Iv -/> v( F P )x(,r

fK12 a2 ax n

dk + a21
x v* )(T2 Xnn k)31-iak nn v()

-K/2 Ak x
x

Now

30(E-E ()) 17 ) - (10)

'L (EE (k) -2 (k) ac,

so
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2 l(K/2 d E r 2E i E(1)
<I x21,> .[ dk 2k) -x 2(k')E v ec Dk

i2e q x

+ UX i E .E(i) (k)) + i ak 1+
nn ec v akx

Since K is a reciprocal lattice vector, the imaginary terms prop-

erly vanish. The expression can be simplified somewhat by using

(1)-E(k) E E(k) - eeXnn, yielding

< 1. 1 (E -2 - ()> (12)

2nnVI nnl PCe c

To compute Ax, we write

E
<vIxl> _ !_,- + <X > -a_ + _1 <E("-.'()>>- + <x >

K lln eE ec K nn K

1 (-E +<E(k)> )
Ec V KC

so

I <vlxlv>12  1 E (2 +<E(k)> 1 2 -2E <E(k)>)
ec

and

(A)2 1 -__[<z2(>K - I<E(k.> 12]+ <_x2 +n_ >
e2E_2 K nn nn i

This result is easily interpreted. If we consider the "classical"

Zener trajectory, described by

x (t) -x (0) EZ (k(t))- E(k(0)))
ec

where k(t) - k(O) + R ect, we can compute the mean square displacement

along this trajectory as a time average. We find
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<x(t)>t= e E(k(t))dt-E(k(O))

0

S f KE kx - Ek(O))
_e ktK )dk /dt0 X

= E(k(t))dk - E(k(O))

" <E (k') > ~ (6

where we have used T , the Zener oscillation period. Similarly
ec

<x2(t)>t 1  Tfdf [E2 -2E E(0)-E 2(O)

1 L r KE 2  dk < E(k)dk x 2
2 2 ti dkx/dt 2E(O) dk /dt + (0)e0 0 x

f 'E 2 k)dkx -2( E(k)dkx+E 2 (0)

- e -2E( O

2 2
2 2- E6)I - 2E(0)<E(k)> IC+ E (0)]

e

and

<x2(t)> -<x(t)>12 [<E2(k)> - 2E(0)<E(k)> + E2(0)K K

-I<E(k)>K 12 E2 (0) + 2E(0)<E(k)> ]

12 2  [<E2( )> :- 
I<E( )> 12

e F

which is seen to be identical with the squared uncertainty of position

of a Stark state, except for a small term associated with the polariza-

tion of the band.
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The crystal momentum expectation and uncertainty in a Stark state

is

<vik x v> - 0

2 - < lk21 ,, 2

X x 12"

This indicates that the crystal momentum is entirely indeterminate

along the electron's trajectory in the Brillouin zone.

We can now see that both one-band Houston and Stark wave functions

describe the Zener oscillations of a crystal electron, but in rather

different ways. In Houston states the crystal momentum, which repre-

sents the phase of the Zener oscillation, is sharply defined, at the

cost of complete delocalization of the electron. In a Stark state, the

energy is sharply defined, and the electron is localized to the extent

determined by the requirement of a positive kinetic energy, but the

phase of the oscillation is random. According to Equation (11), the

electron oscillation is centered about a lattice site, with a small

shift due to the band's polarization. The amplitude of the oscilla-

tion, for the conduction band of GaAs, is of the order of 200 lattice

parameters in a field of 200 kv/cm.

3.4 WAVE PACKETS OF STARK ICTATES

The most appropriate representation of a quantum mechanical system

is normally determined by the experiment that is to be described. We

have already suggested earlier that an electron thermally excited

across the bandgap is unlocalized and might be represented by a Houston

function. The excitation will usually be to the edge of a band, k 0

in a direct band gap semiconductor. This fixes the phase, but it
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ignores the randomness of the excitation. One way to prepare a Stark

state might be by Auger tunneling from a bound impurity level, giving a

precisely defined total energy, again with a random phase.

Although both of these states represent electrons executing Zener

oscillations, evidently neither is suited for the generation of coherent

radiation.* As we pointed out in Chapter 3, 3.1, we can hope to find

a coherent superposition of states in which both the position and the

crystal momentum of the electrons are specified within the limits per-

mitted by the uncertainty principle. Leaving aside for the time being

the engineering problem of how such a state is to be prepared experi-

mentally, we now discuss a possible way of constructing it from Stark

states.

3.4.1 Minimum Uncertainty Product

For a pair of operators A, B, with commutator

[A,B] - iK

the uncertainty relation is

i
AAB > 1 K-2

We wish to construct a minimum uncertainty wave function, for which

AAB - K
2

*An extreme (and rather ludicrous) example of this unsuitability of
Houston states with a range of phases is offered by the filled valence
band of an insulator. In an applied field, the motion of every elec-
tron in this band is governed by the equation hk-qc , and it executes
Zener oscillations. Furthermore, none of the electrons can be scat-
tered, since there are no empty final states available. But, of
course, the oscillations are unobservable, because there is perfect
phase cancellation.
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A gaussian wave packet of plane waves can describe the motion of

an unaccelerated particle in vacuum. Such a wave packet can be cOn-

structed to have a minimum uncertainty product of position and momentum

at a given time, but because the Schroedinger equation in vacuum is dis-

persive, the wave packet spreads and the minimum uncertainty product

grows with time.

In the presence of a potential, there can exist minimum uncertainty

wave packets that do not spread with time. An example is furnished by

the Glauber states in the quadratic potential of a harmonic oscillator.

As we mentioned in Chapter 3, 3.1, these eigenstates of the destruction

operator do not spread, and they have a minimum uncertainty product of

position and momentum, as well as of occupation number and phase. When

the harmonic oscillator is a mode of the electromagnetic field, a

Glauber state corresponds to maximally coherent radiation, as exempli-

fied by laser light.

The minimum uncertainty product of the position x and crystal

momentum k can be obtained from the commutator; for example, in a
x

momentum representation

x - (k)
xnn

so

jx, kx]o() A x O-k x x

xA nn x xk x nn
x x

-i
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and therefore

~Ax~k >

x- 2

3.4.2 Periodicity of Expectation Values

We propose to construct a normalized wave packet of Stark states
1

(r, t) = f (v 0 -v)l(-(v E)e

with If(V 0-v)
2  1

and with the additional constraint, imposed in order to simplify the

calculation of certain averages, that the weighting function be symme-

tric about vo,

f 0-v)f (v0 +V)

We can generalize the calculation of Chapter 3, 3.3 of the expec-

tation values and uncertainties of position and crystal momentum.

Let A be an operator having the property

<k',r Akr>4 (k) - 6(k'-k) Gvk)vi)C v

with ji-r> Bloch functions and eV the Stark state envelopes as defined

above. The operators x,x 2 , k, k2 are all of this type. We can now

establish that the expectation value of such an operator for a Stark

state wave packet (r,t) is periodic with the period of the Zener

oscillation:

I

I



-33-

(,F/ E P-E V)t
f fdr f*vi) dk'O (PDIk 'T) A e ~

f(V OV)f/ dk p(k)p(k,r)
V -f,/

K/2E)t </
V .1~ V dk'dk (P*(k')&(k..k )

P' V /

[G(k x)4 V (k) + C V (k)

P V CU V V

CG V(k x )+C V]dk

sinc~*~ 1 ~k (E -E

But E -EU 2 (v-u
V 14K

and hence the last term vanishes except when pv, and

i k

<A: 1 *\, O' v P fdk G(k )e

+ Eif (V -V)l 2 C

VV
Wihwe c rert this

<A F e ( tK Ef*(v -V+)f(v -V) f / dk G (k )e K
V a V 0-4c12 Vx

+ E If (V0-0)1 C}
V
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which can be recognized as a Fourier series representing a periodic

function of period -K/eE (the Zener oscillation period), with coeffi-

cients

f*(VO-+a)f(v ov) [F(G)+ CV60 ]
V

where
k

K/ dk F k~ i2 Tr

F (F(k)) dk F(k )e
a x KC f x X-K12

This means that for such a wave packet of Stark states not only the

expectation values <x> and <k > recur periodically, as might indeedx

have been anticipated, but also all their moments. The wave packet

reforms to its original shape after a period of oscillation. It may

deform as it oscillates, but there is no long-term spreading. In this

respect the Zener oscillation is similar to the motion of a harmonic

oscillator, and unlike that of a free particle.

The reason for the periodicity in time of the packet wave function

is the uniform energy spacing of the Stark levels. Since the time de-

pendence of each of the wave functions in the superposition is of the

form exp [(i/t)E t] with each energy an integral multiple of h wV zener'

the periodicity follows immediately.

3.4.3 Position and Momentum Uncertainties

The time-dependent crystal momentum expectation value of k is
x

<k> fh 27e g(a)F a(k x )  (13)

where g(a) f*(vO-V+a)f(Vo-v)

and (see Appendix 6.4)
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(-1) i2r 0

(kx 0 a 0

Similarly (Appendix 6.4)

2 2 i a 2-e E

2 2 2  e g(a) (14)
x f 12 ec 0Q 21a

The spread in k of the wave packet, given by

(Ak (t)) 2 . <k2 (t)>f - I<k(t)>12

x x f

varies in a complicated fashion in the course of an oscillation period,

but because of the periodicity of the wave packet, it is easy to obtain

a time average. We have

ic-)(2rrec\

1fT jt L t oI'<k>f 12dt dr e / g*(B)g(a)F*(k )F (kx)
0 V 0 ac

a a0O a

and

2 K 2
f <k>f dt=-
0 12

so that

1 fT (tk ) 2 dt -K2 2 2 (5

0 a#0

To compute the expectation value of x we use the result (see Equation

(9))

<k x -,r > (k) - E(k)] (k)
V e , V V
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so that

<x> 1 2 Eo _ + ia( 1re e: t g ( a) \
f. ,I e-' g(If) Y (E ()

The term in E can be simplified if we invoke the postulated symmetry
V

f(V -V) = f(vO+,):

V -1

If(Vo-)I 2E - E If(o) a 2 +E +If( 0 -) 2E + lf(VO- V) 2 E
V 0 -O Vo+l

- E If(O)I2 + if(c)I 2(E 0++ E
0 acl 0

but

I

E +E =2EV0+  -c0"  v0
0Oa 0 -a V0

and

2 E If(a)I2 = 1 If(O)I2
oil

hence

j~If(v O-v)I 2 E E E
V 0

and

<X>f -EvO g(a)F (E(k))l"
f ee a /

The tim on:- eia-( -E) t

The time average over one period of I<X>f 12 is
I>T12.1+E ga21_

F l2 . E 0 + > 2g()2 2EIF (E(k)) [ 2- 2E o<E(k)> <
-f f- <f V e e aa0

Finally the expectation value of x is
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2>1 If i _)12E2
f 22 0

V e e V

eia(12re g (a) F(~ - X2()+~n~)

F 2 E\+Eva )f*(v-\+) f (vo-v) 1 Fj Ec
e

The first term of this rather complicated expression can be simplified:

E 2af(O_-012 E2  + 22 2f(c) 1E 2 + E )
a 0 oolf~o -l + 

Of-a V+

and

E2  + E 2  (E + ) - 2E EV0 + v 0- a VP (E 0 - v-0 -a v O+a

(2E )22 V2 -a 2  2 + 2v O 2 7re e <E(1)> + <E(1)>

2 2 (27eEa2E 2+ 2a ) e
V0

because E 11v ee + <E >
V K

and so, using also 2rIf()l2211... If(oil2

E2 1f(v -) 2 . E 2 + 2 c1ee) 21 fj (a 2

2The time average of <x (t)>f is (see Equation (12))
V

If Tdt 2> 1 2  + 222

0 f e2 2  vO

+ E2 (k) - x n (  n V+ n(- - 2E E (k)

e c 0e c

The squared uncertainty of position is
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(Ax 2 -<x2>f -<x>f 12

V V

with time average

IJ dt(Ax(t))2 2 _ ccf() 2 2 g(a)F(E())2

K-- 2 nn
0 a-- e e aL=-G a

+ r E k)2>K _ .2 E(k (16)
2 2 euXk)+

3.4.4 Uncertainty Product and Band Structure

We have now worked out the expectation values for wave packets of

2 2
Stark states of k, k , x, and x . These quantities are periodic func-

tions of time, with the Zener oscillation period. If the weighting

function f(vo-v) goes to & , the expectation values reduce to those

0
of a Stark state.

If the uncertainty product Ax(t)ak x(t) = I(t) takes the value

l(to), at time to, it will in general change with time, and will return

to 1(t0 ) at t = to + T, where T = Kh/ec. Thus if a weighting function

f(v0 -v) is chosen to minimize I(t0 ), it will not in general produce a

minimum uncertainty product at other times. Some optimization cri-

terion should be chosen. The criterion will presumably depend on the

application to be made, but some general remarks can be made.

One may wish to minimize the time average of I:

T• l(tOdt - <1>T
0T

or some combination of <I> and the fluctuations of I(t) over a cycle
T

1 fT 2  - 2
I (2(t) - <I>)dt

0

or the maximum value sup I(t).
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Alternatively one might wish to minimize the spread of k or x.x

In every instance, the quantity to be deduced is the weight function

f(v). The determination of this weight function is now a mathematical

design problem related to the optimization criterion that has been

chosen.

In connection with this problem it should be observed that the

expectation values we have computed contain the Fourier expansions of

- 2
the band structure and polarization matrix elements E(k), Xnn (Ck) and

-(k). A band structure of interest, that of the conduction band of

GaAs, can be quite adequately described by five Fourier coefficients

(see Chapter 4 below). We also know, from the discussion in Chapters

2, 2.3 and 3, 3.3, that the polarization matrix elements are negligible

compared with the contribution of the band structure.

We can rewrite the squared momentum and position uncertainties,

time averaged over an oscillation periods, from Equations (15) and (16):

T4(k(t))dt - 2 - 2 lg 2 (17)
1 fo27r ca-l a

I T(Ax(t))'dt 1 [<E (i)2 _ I<E() 12 + <E 'H X2 >
T - nn nn K

0

- g=IIF(()I

+ 2)2 afa12 (18)

In these formulas, the function g(a), it will be recalled, is defined

in terms of the weighting function f(vo-v) as

___________I
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g(c) - f f*(vO-V+c)f(v -v).

This can be viewed as the autoconvolution of f(vo-v), and there-

fore g(a) will be somewhat broader than f(v0-V).

The leading terms of Equations (17) and (18) are the squared un-

certainties (Ak x)2 and (Ax) of a Stark state

2

(A),2  1 <E()2>- <E( )> 2 +  - x2

V -12 K nn nn>K

e V

e [-2n nfl

As we have pointed out in Chapter 3, 3.3, the position uncertainty

of a pure Stark level is effectively accounted for by the size of the

Zener oscillation orbit. We now see from Equation (18), that forming

a wave packet of Stark states has two consequences: It broadens the

uncertainty slightly (last term in Equation (18)), because adjacent

"Stark orbits" are displaced from each other by (roughly) a lattice

parameter; and it can lead to a much larger reduction due to the corre-

lation of the orbits, with each harmonic of the band structure contri-

buting to the reduction.

For example, for a sinusoidal band, as would be exhibited by an

extreme tight-binding model

E(kx) - -A cos ka

the band-structure dependent dominant part of (Ax)2 (neglecting the

small broadening due to the last term in Equation (18)) becomes
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2" 1 2 <E2 2

-2 1 <E> - I g(c)12IF(E)12]

AAs .1_. g()1

e 2 2 2/

Furthermore, we see from Equations (13), (14) and (17) that the band

structure does not affect the spread of crystal momentum.

3.4.5 An Example in the Tight-Binding Approximation

The detailed analysis and design of a wavepacket representing an

experimental situation depends on the band structure of the semiconduc-

tor, and will require numerical work. Still it should be possible to

obtain insights and observe trends which might be independent of the

particular material, using simple models and analytical methods. One

such model, the sinusoidal tight-binding band structure, was introduced

in the last paragraph. We now study an example of the behavior of

wave packets in a model solid with this band structure, a Real Equal

Weight Packet.

We assume a superposition of Stark states centered on v with

weights.

N -(N-1) / 2< (-0 ) <(N-1)/2

f(V-V0) =

0 otherwise

It is easily found that
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.. g(O) - f*(,v0-V-+)f(v0-V) =(N-a)/IN

4:F+[E(k)]  ? A/2 all other Fj[E(k)] a 0

F0[E2 (k)] - A2/2, F_±2[E2(k)] - A2/, all other Fj[E2(k)] 0

In addition the following needed expression can be reduced to a simpler

form

C1 = 2 (E + E +l)f*(v 0-v-l)f(v 0 -v)

- 2 (E O-- E _6-a1)f*(a + l)f(c)
CL 0

- 4E 0 F f*(a + l)f(c()

-2AE E (2a + 1)f*(c + l)f(c()

- 4E0 f*(a + l)f() - 4E0
CL 0

where we have used f*(-a) - f(a), true for a real wavepacket

Let us use these results in order to compute the expectation

<X>f(v) and uncertainty Ax for the rectangular wavepacket. We find for

our tight binding band

L,1



-43-

e<x> [Ev + Ag(l) cos (-e-- J
2 e-1F 2 2

e 2 2 , If(v-vo) 2E2 - EV

+ (!- - A2g(l)2)

+ (2AE g() C) aec t

LA2  2  2 2aec t

+ (-- g(2) - 2- g(l)2  )]

Applying these formulas to our real rectangular wavepacket we find

<x -E + A Cos~ aect f

2 ~ (N-i) /222 1 2 (aec)2 1 2
e e a-l

+ A 2  N2) 1 N ) 2 2ac3

with the series 0) 2 . 2 (N-I)/2 2 ((N_1)/2)2 + 3 + 1

a 1

N2  N 1 N2

2 +T+ - for N large

Note that the amplitude of the oscillation increases rapidly with the

number N of states in the packet. The "centroid" of a single state is



-44-

fixed; as more states are superposed, it oscillates, reaching a maximum

amplitude corresponding to the width of the "classical" Zener orbit.

2
The position uncertainty Ax contains a band-structure dependent

term

2 2 2 2 N T -NosN

which narrows as the number of states is increased, and a second term

2which asymptotically increases as N for N very large.

This is indeed what one might expect on the basis of plausible

reasoning. A single Stark state represents an electron which has a

time-independent probability of being found at each point of its

orbit--it is "spread out" over the entire orbit. As other states are

superposed to form something like a coherent state, they interfere

constructively in the vicinity of some point along the orbit, the

probability density becomes localized and time dependent, more or less

describing a classical oscillating particle.

This localization can narrow and persist only if the wave functions

of the Stark states forming the packet overlap in space; that is to

say, if the range of Stark energies En is less than the energy width

2A of the band, or the number of states is less than 2A/eEa. Stark

states which are separated in energy by more than 2A do not overlap and

cannot interfere; they contribute to a probability density extending

beyond the "classical" Zener orbit, and contribute to an increase in

Ax, which asymptotically becomes proportional to the size of the class-

ically permitted region. The narrowest localization occurs for

N ;- 1.14 2A) 2/3
eca/
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3.4.6 Minimum Uncertainty Product Wavepackets

The rectangular wavepacket used in the preceding section was chosen

arbitrarily. We should like now to attempt to select a wavepacket to

minimize the uncertainty product AxAk . To facilitate this attempt wex

will first investigate the somewhat simpler problem of minimum uncer-

tainty wavepackets in the field-free crystal, in a basis of Bloch func-

tions. Since a minimum uncertainty product packet of plane wave states

is known to be strongly time-dependent, we will only undertake to con-

struct the packet at a time t at which the phase

exp [-(i/ )(t'-t)E(k)] of the Bloch wave is unity and the wave packet

has the form

iJ ic/2
fK/ dkx¢(kx)i(k,r)

Ki / 2

We will try now to derive the required wavepacket shape for which

the minimum uncertainty possible allowed by the Heisenberg relation, is

reached at a time t.

In order to attain this purpose we will use a method similar to

that used to construct the Glauber States and the minimum uncertainty

wavepacket of plane waves.

We showed that in the Bloch representation [r,k] = i, which implies

that D(ri)D(ki) >

Let us call OG(k) the state which satisfies the equality in this

relation.

Let us look at the origin of the uncertainty relation
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1 1

2 x

where Ax - x-<OIx4O>

Ak - k -<OIkI >

Using the triangle inequality we find

x i

Using the Schwartz inequality we can further write:

I1/2 [2 1/2

2 <D(x)D(k)

The state G which achieves the Schwartz equality should satisfy

A x1 I G(kx)> = ibAxIO G(kx)> (19)

where ib is an arbitrary imaginary constant. We will have to determine

which number b realizes the triangle equality.

We can rewrite equation (19) as follows:

(kx-ibx) G(kx) - (<OG kxl G>-iB< GIXI G> ) G (20)

We know that if OG(kx) is also a solution of the crystal 81-miltonian

perturbed by the electric field, then <k > and <x> will be periodic

functionsof time. In the ideal case G(kx) will satisfy the equality

at all times. In a more restrictive case G(kx) will only satisfy the
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equality at a given time. In any case the function G(k), at all times

or at a given time,will be a solution of equation (20).

Let us first solve the simpler equation (20) where

<k > = K(t) and <x> = R(t)I x

a -
Using x = i w-+ Xnn(k) we can rewrite (20) as follows

x

(k + b -ib X 6k))4(k) At)(

with A(t) K(t)-ibR(t) (21)

The general solution is

1 2 A(t) k 2)

G (kX) C(t)e- 2 " x bk 0 x x ) xdkx

We will now proceed to a study of the proposed solution (22) of equation

(20).

To normalize the wave packet, write

k2  Kk
x + x + ik R x X(k)dk

1G(k) e x e 0 x

using A(t) K-ibR K _ iR.
b b b"

Since X nn(k) is real

K2  (k-&2

(k (k) C 2 2b b

and the normalization is determined by
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k2 K(t)+IK/2 (k-K(t))2

C12= e 2b J - b dk
K(t)-K/2 e X

We find immediately

<0kIk Iok> - K(t)

2
D ( b, b(-)

To determine other expectation values, we rewrite

2k + Dkx + i X(')dk'

AG(kx) = C(t)e Kt)

with D =- 't- = --'tt- iR
b b

Let us derive the average <x>G

<0GII IOG> = <GIi -3-+ X(k) 1KG>
x

fK(t)+K/2  kiK(t)+2 *G*G i (-- + D + iX(k)) + Xk)] dkx
i K(t)-K!2

= - i +i (-iR

= R(t)

We see that the proposed solution (22) is a solution of equation

(20) since <k> G = K(t) and <x> G = R(t). We have tested 0 G(kx) against

equation (20). However, we need to check also the triangle inequality.
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For this purpose let us derive the deviation D(x) of our coherent state

(see Appendix 6.3).

<¢lX1¢> <'GI- --+ 2iX(k) * kx  C()G>k

x
t 22

Let us first deal with <- 
>

3k 
2  G
x

a2 > JK+K/2  k()*k[..2.+ Xk)P~ ]d
x

a 2 > = -< - b 2 D G(
k2  G x

x

Let us expand the square term

k 2  k2  2
X- + D + ix) 2 x - D 2+ X 2)+ -Dk - 21(k b +D

b 2b x

then we can write

a2  G - ( k 2  K b

3k2  /2 b -

J K+K/2 2 () - 21X~k) 2.+ D) - i X( ) dk (23)

We can evaluate the first term of the right hand side of (23)

k X 2  2D 12>2 x
< - D2+-2Dk> 1--D 2+-2DK- x
b b 2b x G = b b b 2 2

1 / .2 _ 21 2-K+ I K . \ <k x>G

b\b2 b) b (bL b 2
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1 ~ x 2+1 R(t) 2
22 +D1X )+k>k

2 b

Then <x2>G 3k 2 x >G
x

1 1 D2 (k + R2 (t) + <=-) x2

b b2  G

Recall that <> means
G

(K+K/2

<f>G J*(k oO (k )f(k)dk
K-/2

Since 0*G and K are time-dependent, <> is also time dependent. Also
G G G

note that <> 0 <>K

The deviation D 2 (x) is

2 2 2 1 1 D2 ( k  + 2-D2(x) <> - <x> = - b 2  k) ()- k>

G G bb 2 xG

and the uncertainty product is

D2 (k )D 2 (x) I 2 (k - D4 (k ) + D2 (k (k)>
x b xb 2 x xG

The sum of the first two terms, and the last term are each positive.

D(kx )2 is a function of b

/2 - k2/b
k2 e dk

D(kx) 2 =-K/2 x x

ic/2 -k2/b

e X dk
b12 x

a D 2(k) <D 2 ) <D(k ) 212

I
2 x x 1
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2 D(k) D(k)2

Some values of B(b) are shown in this tableb b2

2 2 2 2~
b .02K 2  .08K .18K .32K .,,2

B(b) .2496 .2474 .2162 .1666 .1250

Since the uncertainty 12 is greater than 1/4 we deduce that the positive

term

D (k X)2 < X- 2(k)>b a 2D(kx) 2

1
is greater than - B(b).

2
Since the term <E-X >b depends on the form of the Bloch functions

2 1
it remains crystal dependent and is not likely to yield I = for4

b>O. The Bloch state appears then as the only minimum uncertainty
2

state since 12 (b=O) b/2 (b/2) 4 for b0b b2 4fob "-0

Mathematically the reason arises from the fact that only the

Schwartz equality is always satisfied whereas the triangle inequality

is only satisfied exactly for b-0. For small b these states are,

however, very close to achieving 12 . Let us call them quasicoher-

ent and let us denote them ly>

Does the family ly> constitute a family of states which minimize

12? In the procedure chosen we know that they are uniquely determined.

2
However, there do exist other procedures to minimize I . For example

we could have tried to satisfy the triangle inequality first. We have

shown only that the only exact minimum uncertainty states of this type

are the Bloch functions (b-0). The family [y>b are not necessarily
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those states which minimize 12. The family '[>b is derived from a
special criterion. This criterion is: we will try to minimize 12 by

satisfying the Schwartz equality. It is difficult to analyze the use-

fulness of this criterion. However, it is possible to analyze the

result which is:

2 4[2 D(kx) D(kx) 4

2 D- - +(k x2 D( 2<=2 >
I b -2 "' -(k) X To>b

We have already pointed out that the family 1¥>b coxs close to satisfy-

1= 1 for b small relative to K(b < 5- ) , since D(k and the
ng 10 2

polarization terms are weighted by D(k x).

Since the ultimate purpose of this discussion is to explore methods

of localizing crystal electrons in the presence of a field in regions of

reciprocal and direct space small compared with the Brillouin zone and

with the size of a Zener orbit respectively, the ly> b states evidently

provide a fruitful basis for the discussion.

3.4.7 Gaussian Wavepackets

We now attempt to apply the calculation of the last section to the

complete crystal-plus-field Hamiltonian. Since the Stark states are a

complete basis for the direction of a reciprocal lattice vector, it
I

should be possible to construct a wavepacket with the properties of a

1Y> state from Stark states, and we shall attempt to approach this
b

criterion as closely as possible.

We begin with

II
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' G(t ' r) - fG(v)N(t,r)

W /2+K -i Ev t

ke ef k )dk i E
ex e vee dk

IfK+/2 _ E (fk ) E ()

" .- 2 pkre e 0.,

f f(v) e eE h

where E = v21ree + <E(1) (k)> We can write the waveform G(kt) in

the Bloch representation as:

.- (k£)dk i< E ( ) > ( k
= 1 e c J c .

G(k t) -e e

f(v)e ft (
vn

s - O 
G

00 iv 2 , s

Let us define hG(s) - e K fG(v)

with s - k - - t

-iv 2s

we have f- (I f: +Ke C b(s)dswe hve s(U)= [K-K/2 e

As we clearly see that the term h(s) will never allow the destruc-

Sk---- x E(k')dk'
tion of the phase modulation e ee 0 x if f(') is time
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independent and hence IG(kxt) will never have the form of the solution

(22) of our quasicoherent state y>b at all times.
_o2 (VV)2

However, using a gaussian distribution fG(v-v0)= e we can

generate a periodic gaussian function hG(s) centered at zero with a

small deviation such that for s - , + K

2

h(s) a e x fG(v)dv
fG

2r 2 2
" e s -C2(v-v 0 )

e K e 0 dv

ei !I V+ 0) - 2 Vs
e e dV

~ 20 2  for K

we see that h(s) *is centered at zero. We also need a to be small.

- Let us substitute for h(s) in equation (24)

,G(kt) e- 0 e~l g ,  k

2k 222 ectk2h A et at et + _ax
Le us kx -iut e 22 es)22 in (25)--~l 1kd i E (1) () eqain(2)cn

except for the replacement of xk) Ey tio 2 a

developed in the shape of equation (22)

12 k 22et
x . .... t .
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ir ecte ti<(1)- . t 2rr et 2
-i<E k) -i V O -  2 2

with C(t) e e e

2
b=

(1)- k 2Tr 0  eetk
kk i<E (k) -A+ i -k +_ x

b x ( K ec x 2

e~be

with K(t) -+ eEt

R(t) - - 0 <()>

we can write 4G(k) as

i k2 + A(t ) k x (i
1b x2 +b x -e ~fx E~l1 ((k')dk'

OG(k) - C(t)e 2b x b x x

What are the properties of this state? The expectation values have been

calculated before. It is possible to replace X (k) by E(1 )(k) in thefn

average before any summation is done over Xn (-). We directly deduce,

as before

<k>G - K(t)

2
2 _ b a 2D(k) x 2-2 if a small

< I [<E( )>G E]

G ec I G V]j

[l
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l D 2

<x2> 1 b2  + R(t) + <-(k) - X2(k)>c

-- E2 2k G

+ 2R(t) <E(l-)> G + < 2 -e e e 2 e2

the deviation is finally

2
2 1 D (k)b 2D(x) b b 2 b(t)

+ [E (k- > ]
+ e22E Gb (t)

We directly deduce that the Houston state is a minimum uncertainty state

2 2=1since D(k x ) D(x) 2 + D(k

b-*O b-0O

As we have done earlier with the rectangular wave packet of Stark

states, we shall now study the behavior of a wave packet of Stark states

with gaussian weighting, in a band with the tight-binding cosine form.

Before we proceed to details, we should point out that our calculation

so far has included an arbitrary restriction to wave packets with real

weighting coefficients. As it turns out, this restriction is not

altogether trivial. For example, we have seen in Equation (8) that in

order to form a Houston state as a superposition of Stark states, it is

necessary to use essentially complex expansion coefficients, that is to

say, coefficients whose relative phase does not vanish at any time

during the Zener cycle.

Il ,.. l + + , . .



r

-57-

A consequence of the restriction in the present context is that

the minimum "size of the electron" Ax to which a real-coefficient wave

packet of Stark states can be localized is field-dependent, and as we

shall see presently, may be relatively large; while a complex coeffi-

cient wavepacket is only band-structure limited, and can be of the size

of a unit cell (e.g., a Wannier function).

As a practical matter, however, the restriction is not very serious.

A strongly "compressed" electron, as one might expect, fluctuates dra-

matically in size over a Zener period, and is far from our notion of a

coherent state. At the same time we shall see that states approaching

this notion, whether formed with real or complex weights, have very

similar properties.

We have determined that for a real gaussian weighting function

with deviation a in k-sjace, the uncertainty Ax(t) oscillates.A

We shall now determine the deviation a which minimizes both the mini-

mum and maximum of Ax(t); we already know that for narrow wave packets,

a < (11)x 101, such gaussian wave packets come close to being coherent

states with uncertainty product Axk x  0.5.

From

2 + 1 <E 2(\ >(<E>G) for small b

with

E(k) -A cos k ax

,1 /k eet 2

G(t) - ix e-bfor small b

-~~~~~~~~~/ "T..r/ll l/mn~/alnm lll / lI[ i
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its variance is k x let

1 2
(k -K)"2 x

-<E(k)>t 1 f e cos k a dk< --G (t) j2 a x x

let y = k -KX

1 2
y<Ek) = -A 1f® 2a2

< e cos(y+K)a dy

cos (y+K)a=cos ya • cos Ka - sin ya sin Ka

<E(k)>G t) (-A) cos Ka<cos ya> N(0,)-sin Ka<sin Ya>

2
S2 2

- (-A) cos Ka e

where we use the expression of <cos ya>N(O,) and <sin Ya>N(O,)

tabulated in the appendix 6.5.

Similarly

<E2(k)> -A2< - cos 2k a +- >G(t) 2 x 2 G(t)

2 2A + A cos 2Ka <cos 2ya>
=~ +2 COS a<cos N(O,a)

2 2 _2a2

A + A cos 2Ka e

and finally
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2 +2 2 2 - a
2 b + 1 +- A CoTx 2b e 2 2 2  2 C h ~

2

2 2ba

( 2eta/ e-ha2h

The position of this electron is given by

ba 2

AX L~ 2 1--e2

i - e a et

The minimum value of x2 is attained for cos 2eeta = 1 which corresponds
Sto the edge of the B.Z.:

ha2

2 1 A2- 1 -- 22e2 2 2

For a given electric field the minimum size of the electron: Ax is

given by

I
S,---I
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2
d~x
db

2 dbba 2

2 2 2 2 a 2 e 2 -ba
2

2b 2e2 2

a~b2 [e- 2 b eab .2
a 4- 2b with n 2A

[ 2 eca

For a typical crystal 2A = 2eV,a = 5R and we have n 0.4 I- with eC

expressed in kV/cm. We can now plot the results formed as a function

of the electric field in Figure 1. We see that Ax is large at t = T/4,

and the uncertainty product is large at that time.

Let us also derive the state where the maximum value of Ax is

minimized

Ax2 max 1+ 
- a 2

2b 2e2 2  /

dAx 2

db

2 2 -ba 2
--- +-- ea - 0

2b
2

-ba2 b2a4  4
2

n

2

-ba2/2 2
e ba

Figure 2 shows a state with less fluctuations in spread Ax; its uncer-

tainty product remains close to 0.5 at all times.

1.
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We have earlier introduced the Houston functions (Equation (8) in

Chapter 2, 2.2.3 and Chapter 3, 3.2) as superpositions of Stark states

with complex weighting

• /0kx( (0)

K/2 i x ( i2v k (0)
f(v) f dkx (O)f(kX (0))e 0 e kKx x

which is the Fourier coefficient of f(kx (0)) weighted by

i 0 kx (O E l (k')dkxee _ x

e 0  . The weighting function f(v) is real if and

only if the waveform f(k x(0)) contains a phase modulation

ifkx (0) E (1) Pdk
e efx()Elk owhich cancels that weighting f(k x(0)). Real

waveforms f(v) generate the type of oscillations we have discussed up

to now.

We will now consider a waveform f(k x(0)) without this phase modula-

tion. Such wavepackets generate a mode in which the size of the elec-

tron Ax is not bounded by a minimum value set by the electric field.

Let us recall some previous results about wavepackets of Houston states.

We will set X(T) - 0 in this calculation. We have

<x> - i<f*(kx (0))f'(kx (0))>

eE x x

<x 2 = -<f*(k (0))f"'(k (0))>
x x K

+ L (E' i(0) +-e - (£E'(0)) f (k ))! 2
ee x
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+ .. . E k Q ~ ~ - E(Z()) 2 If (k (O))12> K

21< (!(! + eet\ E(k(Q)2 f*(k (O))f'(k (0))>

+ (~O) + O~) if(k(O)) 12>"

'with < )> = ~K2 dk (0)()

S K -_K/2 X

Let us simplify these expressions by writing

E(1 (0) + - =ct E(t)h

E (k(0) E E(0)

f(k (0)) - f(k) =f =IfI eP

x

We first wish to prove that it is possible to localize an electron

in this mode. For this purpose let us simply build a Wannier state

positioned at Z along the electric field. The corresponding wavepacket

is

-ik x(0),e
4f(k x(0)) e

Using a cosine bandstructure

*E~k) -- A cos ak

we quickly find

L - -
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=2 2

l-o cet

At times t -m --2ir our electron is localized to the extent allowed
ace

by '-,(k) which is of the order of one lattice parameter. Having done

this the electron size will oscillate drastically to the size of the

Zener oscillation. The point here is that the localization at a time

t is not electric field limited but is bandstructure Z(]k) limited in

this mode. However, its spread is electric field dependent. Let us

generalize these results. We have:

<x2> M<f*f''> I+ 21 2'(t)- EO}2 f 2>K

e c

+ < <{E' (t) - E' (0)}1f12>

+ < [{E(t) - E (0) f *f'

We provisionally drop the -z(k)term2

using <( E'(t) -E'CO)} Jfl 2 > =E(t) - E(O)} f2

S<{ E(t) - E(O)} 2!fllff'>
ec K

and f*f' - f*(IfI'e+i + J 'Jfje~j )

a 21f1[flt + j0tjfl 2
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we find <Ax2> -<f*f''> K

1 <{E(t) -E(O)}Ilfl 2 > L <fE(t) E(O)} ' 1f1 2>. + "--- < - e -

ec

Since there is no phase modulation in f, the phase * is only related to

the initial position in the crystal: -kx (0). In the desired

term Ax all terms involving t should cancel and we find (letting C - 0

for simplicity):

2 .<f*ftv> +1 -Et 2f2AX 22 2 2 - E(O) < 1
ee

1 - )1f1 2>1 )2 <=Tjf2

22

<x> = i_<{E(t) - E(0)}[fl2>

For t - 0 the bandstructure terms cancel and x2 reduces to -<f*f''>

which is the variance of the wavepacket related neither to the band-

structure nor to the field. These last equations can be compared with

those of the superposition with real weights. In that mode no E(O)

terms appears as a consequence of the phase modulation
j-k (i)dk1

e * If an electron is not too strongly localized at a

time t its size will not oscillate so drastically. An interesting

application will be to determine what is the minimum size of an electron

traveling through the Brillouin zone. In ballistic transport the de-

vices considered are usually at the order of a micron or smaller. It

can be imagined that for such device dimensions the size of the electron

may not be negligible on the scale of the device.

*1f
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The wavepacket to be used is obviously the quasicoherent one

fk(0)=2,a)' 4  -(k x(0 )-k 0)
2 /4a2 - itk (0)

centered at k 0with t 0 (without any restrictions)

fl~~~~k (0)-k - \ k()

f'(k (0)) M fit~ 2(kx -0 2)f(k(0))

x 2a 2 2a 2

and we find

<> 1- <{E(t) -E(O)}>Nk a

2 1 (k (0)-k 0)
2

2 < 04 N (k(1)y2 40

+ e22 <[(E(t) -E(0)} 
2>N ~ a)-(E(t) -E(0)> ~a)2)

2 2
We look for a wavepackat of variance a which will minimize Ax

It will turn out again that such vavepackets are sufficiently narrow

*for the Gaussian wavepacket used to be nearly a coherent state

AxAk x=0.5. This will assure our result to be near optimum. En this

calculation we set ko 0 and we use the cosine bandstructure

E(t) -- A cos a k (0) +- E(0)a x1 0) ~ t
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For narrow wavepackets the two first terms of Ax2 reduce to-

Let us compute the second term of AX 
2  4a 2

2

< [E~t) - E(O)} >(Oa

2 2 ect= <A {cos a(k+K) -cos ak} > with K- -

N(O,a)

- A2 <1 + 1cos 2a(k+K) + cos 2ak -cos a(2k+K)>- cos aK> N(Oa)

2 a2 2 2 2a2a 2 2
A2[+Cs 2 Ka e + -a a ~cos aK e-a

-Cos aK]

where we have used the formula of appendix 6.5. The third term of Ax 2

is the square of

<E(t) - E(O)> N(oa) m -A<cos a(k+K) - cos ak> N(OOa)

2 a2

a -A e 2 (cos aK-

and we can finally write

22
-a 2+ KL [ (-cos aK) ee t1Cs

+ e -22a2Cosa (Co s K1 with K h~

2 2 2At time ti 0: 4X 1/4a -Ax min.*

At the Brillouln zone edge t

ec
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(t" a e

M 1 + 2  - ea 2 2 2e-

where we introduce b - 202 or a - .x 2 is an interesting oscillat-
lrr T

ing function of time. Its maximum occurs at t M -- - W T or K = 2
4E 2a

which is 1/4 of the Zener period T. This maximum is

2 1 A2  -a2b/21:! 2. 12 +  e2-"

To find the wavepacket which minimizes this quantity we find the solu-

tion of

dx 2
d n 0

db

22 22"

or--- + n 2 -e a b/2

-a2b/2 2a4 4

ea2b/ b 2a 4 =4 2
n

2

ba2 e_a2b/4

The results found using these formulas are the same as for the

Zener mode when Ax(T/4)Max is minimized, although the expressions are

not exactly the same (the differences are extremely small). We compare

these results in the table.
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Real Coefficients Complex Coefficients

Ax Max minimized Ax Max minimized

bya2 byn 2
2 2b/ 4

ba2 eha b/2 b ba2e-a

Ax Max occurs at T Ax Max occurs at T
4 4

AX 2  .. + n2a2 1 1
- e -a2b/2 Ax .2  l+ n2 a 2 {1 e-a 2 b

max 2b 8 mx 2

Ax Min occurs at T Ax Min occurs at t =0

2 2

Remark for 2 2 baTab/4_ which

ab e

-- Zener period minimizes Ax Max
ec a

Ax 2 (T/12)

1 2 a 2 ba2-- b

. = + a- 11-e 2
2 1

2b

therefore

Aax Max = mx Max

real complex

Ax Min = Ax Min

This is only true for the Ax max minimized wavepackets!

U
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The graph for the dependence of Ax max minimized in the complex

coefficient mode is then the same as graph 2 of the real case. The

uncertainty product is nearly 0.5 at all times.

In order to show that the Ax max minimized state is a special case

we have also studied a different case where the electron is localized

initially at t-O over 10 lattice parameters (Ax - lOa). We have

plotted on Graph 3 Ax for different times:

Ax(O) 10la - Axi
-120-12

Ax(l0 - 1 2 sec) s1 sec scattering time

Ax(T/4) - Ax

Ax(T/2) - Ax .on the Brillouin zone edges

On graph 4 we show the time dependence of Ax for Lx(O) 1 0~a for

C 0.1, C = 1, c 10, C = 100 kV/cm.
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1000 AX/A

I7
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Figure 4. Siz,. fluctuation of the wavepacket of Figure 3 during
a half-cycle of the Zener oscillation.
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4. FOURIER SPECTRUM OF THE GaAs CONDUCTION BAND

4.1 MOTIVATION

We have seen that the coefficients of the Fourier series expansion

(FSC) of the band structure in the k direction appear as parameters in
x

the general formula for wave packets of Stark states. Since conduction

electrons in GaAs are possible candidates for the observation of Zener

oscillations, the FSC of the GaAs conduction band will play a role in

the design of wave packets.

More importantly, these FSC are also used for calculating the

radiative transition probabilities between Stark levels. We shall

demonstrate this by working out the probability p of a transition

from an initial state Iv> to a final state Iv>.

We assume the Stark states to be exact eigenstates of the crystal

plus electric field Hamiltonian H

Holv> = Elv>

the total Hamiltonian is then

Htotal H 0 + p

where A is the vector potential of the electromagnetic field and p the

electron momentum. If we assume the interaction pot.,,tial to be suffi-

ciently small (compared to the inverse of the observation time) for

first order perturbation theory to be valid, then in the dipole approxi-

mation the transition probability p is proportional to the square of

the matrix element <uIpx l>. Let us evaluate this matrix element:

i1
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<PxI>= <lxH I  - H l> (E - E)<IxI>
x total total (E> (E V 1

- (~ E --/2(xvke - E)+ Xnn(k) dkx

ECE2E(k) (e£
= (E - E - * ( ( e Xdk]

-4/2

k
I__ 1 fK/ 2  ei2ir(v-) _-

= (E - E --Li / e 1Tv-)KxE (k) dk

We conclude that this transition probability is proportional to

the square of the amplitude of the FSC: F of the bandstructure E(.

The transition probability is the basis of the phenomenological inter-

pretation of radiation where the ideally unscattered Zener electron

initially prepared in state IV> moves to Stark states of lower energy

in the field direction and releases its potential energy as radiation.

The process that we have just described is the usual picture of

the incoherent emission of radiation. For the device application of

Zener oscillations as a coherent radiation source we are more interested

in a classical description, in which the conduction electrons oscillate

in phase. In this classical picture the radiation originates from an

oscillating dipole which is formed from a superposition of eigenstates.

We have studied such superpositions or wavepackets at length. The

additional feature is that as it radiates the wavepacket will move and
K

spread. We know that for a wavepacket not too wide in Ak < the
x 10

expected position of the electron is given by

x(t) - x(O) +- [Ek(0) + t - E(k(0))]
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We also found that this electron was localized in a size 2Ax which is

also oscillating. Most of our studies emphasized the various kinds of

behavior of Ax for different wavepackets. For the optimal wavepacket

where AxMX is minimized it was seen that Ax does not fluctuate much

the product AxAk being nearly optimal at all times. For such a wave-
bX

packet the oscillating electron is a simple classical dipole, Ax being

small compared to the amplitude of oscillation. The frequency of os-

cillation of this dipole is then given by the Fourier analysis of x(t)

which is simply the Fourier analysis of the bandstructure. The Fourier

analysis then yields the radiation spectrum of an unscattered Zener

electron. Our studies of wavepackets have enabled us to establish the

conditions under which the unscattered Zener electron exhibits classical

behavior.

4.1.1 Fourier Series Computation

The bandstructure of the GaAs conduction band was kindly furnished

by Prof. Karl Hess of the University o1 Illinois. It is given at 156

sampled points in (i/48)th of the GaAs Brillouin zone (see Figure 5 and

program DATABAND). For convenience we use the bravais cell of the

reciprocal space which has simple boundaries. Using the 48 fold symme-

try of the Brillouin zone we fill 1 of this Bravais cell (see Figure

6 and program FILLBZ2) and store in the file CUBEBAND. The Fourier

computation is carried out by the program called ZENER2 (see Figure 7).

This calculation is carried out for each desired direction of periodi-

city K in reciprocal space starting from any point KO of the Brillouin

Zone. An accuracy of one percent was required. This accuracy is

determined by the number M of points used for the interpolation of the

bandstructure along the path [<0, <0 + T]. This interpolation uses a
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Figure 5. Sampled area of the Brillouin zone.

Figure 6. Cubic region used by the computer.
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TYPE: RUN ZENER 2

ZENER2*

RECTIVE PROGRAM _______

PARA3RD2=4
TYPE: RUN INTERPOLATION
*ZENER2F7 2ND OR 3RD

41- ORDER
LOAD
FOURFILES SIPTH
OR

BANDFILES DISPATCH PROGRAM
ZENER2F (EU

FOURIER SERIES PLOT OR PRINT
F ROM K:?P OR SAVE INTO FILES,
TO K? INTERPOLATION OR

FOURIER RESULTS
6FOURSERIES2 BANDPRINT2

BANDPLOT2
FOUUPRINT2
FOURPLOT2
BANDFIIJE2
FOURFIILE2

*Actual name of the programs

Figure 7. Block diagram cf the computer programs used to Fourier
analyze the band structure in an arbitrary direction.
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polynomial expansion of 3rd order using 19 coefficients fitted to

the local sampled data. The formula for the point located at (x,y,z)

of the closest sampled point (Wl,W2,W3) is:

E(x+Wl, y+W2, z+W3) E(Wl, W2, W3)

+A(O)x + A(M)y +A(2)z

2 2 2+B(O)x + B(1)y + B(2)z

+G(O)x 3 + G()y 3 + G(2)z3

+F(O)yz + F(l)xz + F(2)xy

+H(l)x 2y + H(2)xy2

+H(3)yz2 + H(4)y2 z

+H(5)x2z + H(6)xz2

+H(7)xyz

The Fourier computation is made using the trapeze method. The results
are saved in files labelled K, <0 and M. K and c0 are given in Miller

notation and correspond to a body centered cubic reciprocal lattice.

In Figure 7 the block diagram for these programs is shown. Those pro-

grams are given in appendix 6.6).

4.1.2 Results

The Fourier calculations are given for K = (100), (110), (111) on

pages 82-84 . Five harmonics (10 for (111)) are sufficient for an

accurate description of the GaAs bandstructure. In practice it might
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be interesting to use for example the fourth harmonic in the (111)

direction in order to maximize the number of oscillations of an electron

before it is scattered.

The same calculations were done with k at a slight angle withx

respect to a principal direction in order to evaluate the effect of

misalignment of the field. As expected the radiation spectrum is

largely conserved except for a broadening and a curious splitting. It

is possible to account for this behavior analytically, but a plausi-

bility argument is a good deal more instructive.

If the field is along a principal lattice direction, the trajectory

in the extended Brillouin zone that describes the motion of the elec-

tron, beginning for example at r, traverses an identical path in each

repetition of the central zone, that is to say, it is periodic with

period K, and the Fourier coefficients are determined by the band struc-

ture along this segment of "length" K.

If the field deviates from a principal lattice direction, the

trajectory, starting at F, may traverse many repetitions of the central

zone before it again reaches the point r. Thus the fundamental period

of the periodic motion may be long, to be exact, the length of the

reciprocal lattice vector of the trajectory. Furthermore, the trajec-

tory will sample different regions of the central zone as it crosses

successive repetitions. However, if the deviation from a principal

direction is small, then because of the continuity of the band struc-

ture, successive segments of the trajectory will be quite similar,

changing only slowly in the course of the transit from r to r. Thus the

long-period periodic motion can be viewed equivalently as a short (<)

period modulated motion, with a "low-frequency" modulation
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• .corresponding to the gradual change of the band structure segment that

'is being traversed. From this viewpoint, the broadening of the spectrum

* arises from a low frequency frequency modulation of a high-frequency

'- carrier.

Furthermore, although the change is gradual, corresponding to a

low modulation frequency, it can be quite substantial for a band struc-

ture as complicated as that of the GaAs conduction band: adjacent

segments of the trajectory are rather alike, but segments remote from

each other can be quite different. In the language of frequency modu-

lation, this means that the modulation index may be large. It is a

familiar result that such a "deeply modulated" signal may have side-

bands that are larger than the carrier, or even a missing carrier.

This is the phenomenon of spectral line splitting seen in Figures 8,9

and 10.

ii1

II
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Figure 8. Spectrum 1 0 0 and 10.5 .5 .5.
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FiSure 9. Spectrum 1 1 0 and 10.5 10.5 .5.
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Figure 10. Spectrum 1 1 1 and 9.5 10.5 10.5.
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5. SUMMARY

This work is devoted to a general study of the one-band oscillation

of an electron under a high applied electric field, the so-called Zener

oscillation.

First we review the acceleration theorem and the introduction of

the one-band approximation. The existence of the Stark state and Stark

ladder seems to be definitely theoretically established in the litera-

ture.

We study general Zener oscillation states which correspond to

wavepackets of Stark states or Houston states. The analysis is carried

out in terms of the expectation values and uncertainties of both the

position and quasimomentum operators.

The position expectation and the size Ax of the Zener electron

oscillate in time with an amplitude that depends on the wavepacket. We

discuss in detail two different types of modes: the real wavepacket of

3tark states with electric-field-dependent minimum size; the real wave-

packet of Houston states with arbitrary minimum size and a resulting

more or less large fluctuation of the size Ax.

We determine that the Houston state is the only state to satisfy

exactly the equality in the Heisenberg relation: AxAk > However,
x -2

for narrow wavepackets with Ak small the Heisenberg equality is nearly
x

realized.

We determine a classical state corresponding to a quasicoherent
~1

state AxAk Z .- , with maximal oscillation amplitude and minimal size
X 2

fluctuation of the Zener electrons. This classical state, for a model
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tight binding band structure, corresponds to a Gaussian wavepacket with

a variance which is a function of the electric field.

Finally we give the spectrum of such a classical Zener oscillation

in the GaAs conduction band for different electric field directions.

This spectrum is broadened but not destroyed for small misalignment of

the electric field.

I

b.4*
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6. APPENDICES
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APPENDIX 6.1

Orthogonality of Stark States

(E -E)

dk dk'0,(i)0*Pf rP(, ,p e

(EV -E )1 f /
hi dk o*(k')o (k)

(E -E k

V x
-i h ec x

-e je
-_ /2

since E -El 2'- (v-u) we have:
V K

kc/ - E~~k K/2 e1 2- (v-ii)k x
e I ' /2Kx

If c/2i - (E -i (Ev~EU

< ~ e -rtK12rt> 6 -

.. K
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APPEnIX 6.2

Computation of <$ ( r,t)IH~~ otall(-r,t)>

Rtotal 0 -e~

<Vl~toff I/2 dktdk *(kt)<(rk)HI (r,)4k

<vl~totallv> -K/2 2 oa

<~~~k)H-exlp(r,k-')> =EOk)-eE +X~k 6(k -k')
x/

Using the result (7)

<vlHtota V> . fL/ 1E()-eE [l [ E-E('() + X Jjdk

tota K ecnn
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APPENDix 6.3

Bloch Function Matrix Elements

<k',njxlki,n> and <k',n Ix2 J'n>

Differentiate the expression

J4D*tW,)l (k ,r)dr a

with respect to k

(3 f i(k-k') -
3k ~n kV) = - Ie * *(k')u (kdr
x

f if(~) ni(k')xu n(k)dr.

+fe kk) u*, (P' u W dr (C2)

=i<kv,ftlxlkn> - ix n Ina k' (03),

defining = I (w) f u*,(,r u (k,r)dr

The step leading to (03) can be taken because u*, has the crystal
x

periodicity and hence the last integral in (C2) is proportional to

g So we have the result

<kt,ntlxlkzn> - -1 Sn7 (k-kt ) + Xn' (k')S(k-kt )

g Now differentiate both (C2) and (Q3) with respect to k
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D2
3 k2 nn(k-k - n i(-') 2n (k)dr

6+(-' - 2I u*, Ck')x u-
x

+~~ e ei(k-'- k') - - u Wkdr (4+ - (k)dr

nk A n

x

2

:. + ~~i e(-')-r Un, ak) - gd

fJ n e(-) 2 u ndr (C4)

Xx

a/e 2 , .j7V u.,x _2

S6 -(k-k') u*, i(k')x u (k) d r
k 2 n 2

x

xnA,)  n

-x- , (k') (0

<k',n ~ ~ ~ nxl ', >'--- sn (k- c- x (') (C5)kk'

x

We can use (C4) and (C5) to evaluate the troublesome middle integral on

the rhs of both:

u- eu d r - - 3 2
efe-k' -r u,3ek U*,(I) (-u d

xw,3kn fn2un d

x

DE iX, (k)-k6(k)
x

and we find

< - 3j22 ( ' ( - '

k Cn ixn~f> -i 66(k-kt)-2iX , W dk (-)

x

2

j ei n- .2 u*,(kp) -a-u (k)dr (C6)
3k'

x

For the states of a single band, n-ne, we can take advantage of the

Hermitean property of the coordinate operator to simplify this expres-

sion. Starting with the normalization integral
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f u*,(k)un(k)dr 6nn Sn'n

and differentiating with respect to k we find

a u*, au _

f k un u*n n k / dr= 0
x X

or

X*, Xt -0, X real
xii n n nn

and

3 D. u*
= - n undr

Ix

as well as its derivative
D (k) 3 au* au* Du

-i - nn (i) drak 2r)3f a -2 un 3k AX

are pure imaginary. But since lIu/ 3x 2 is real we can define a real

quantity

-nn" W dr
nf"

and then

23 2u* aX

(2r)3 f a n - - nn
J -2 u dr k nnx

x

and

6(k)~+ 2iX -+ n1
<kt,nlx 2 k,n> a2(- ) + +'n 2 n 1X + i DX- n- (C7)

L9k x nn nn Ak k (C7)x

In this expression the last term is imaginary, and it cancels the

imaginary part of the third term in the bracket.

o,
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APPENDIX 6.4

k K/
-c/ J2 42 i27ra I~d-

K-42

IC f K1 icla

kdk-O e 0
-i-K/2

b)lr +,z/ kdkIn 2 + (arno) -e-Tr

fK1J kde k ak 0 [~ 2jic ~/
-42 -C/

K/2/ 2~rc
b) -~kE a0

if ic/ 12ir kC dk
2 K 2-Ucr/ 2

K iK/2 iKic12wa ctK



-94-

APPENDIX 6.5

For a narrow wavepacket

2

<cos ay> N (0,j) e cos ay dy

22
a a
2

- e (see Dwight table)

2

<sin aY>N(0 ) L fe sin ay dy - 0

since for small variance a < 10-2 it is possible to-replace the inte-

gration over [ E. by ]-a)CD[

( )dk - )dk

Let us evaluate the error e:

e 2 2 e- 2 cos ay dy

• "< _ . -/2 f e-y 2 12cr2
c /2< -K/ e2" J-Y 2+2 dy

let x - y/a

?i 22
tjj /2 ar x 2 /2 2a /2

-K 2/8a2

< e using the Chernoff bound on the error function. In

our calculation 
-r < .1 the error is e < 3.8 10

-6

Y K

,-A



-95-

APPENDIX 6.6

Computer Programs



DATABAND
90 DIEI0il)
100 RMDTA BAN4
110 FOR Y =3TO 7

*120 READ EB(4pY,5)13 DAA 091 P,525 P0.4920 P0.802 P,3776
140 NUXT Y0 9 1
150 FOR Y z4TO06
160 READ E.8(59YP5)
170 DATA 0.492040.2352 P0.4920
to iSNEXT y
190 EB(69565) = 0.4920
2100 FOR Y =2TO9
210 READ EB(3tY4)
220 DATA lo IO71P,4O09lrl3Ull8t5%l57

* 23ONE(T Y
240 FORYS=3 TO 8

*250 READ EB(4pYy4)
*260 DATA 0.6448v03M33,.5256,1.0043p,4I60p,5591

270 NEXT Y
*280 FORY = 4TO07

SREAD EB(5,YP4)
00DATA 0,525690.4r2040.8602P,3787

302 OET Y
M EB(64) 20,3602

330 READ El 2.Y'3)
340 DATA 1.5'422y,0875P,9567,1.2081i,155251.6272P,146121.264P1.1264t1,0796

*350 NEXT Y
360 FOR Y=2 TO 10
370 READ E8(3Y,3)
380 DATA 0,956,7,0,6097p,.7419,1,1476,1.4M92,14058,1,2594,1,1368,1,0937
90 NEXT Y

400 FOR Y =3TO09
410 READ Elf 49Y3)
420 DATA 0,7419i0.6448,0.9517,1.3836,1.6178,1.59561,5174
430 NEXT Y
440 FOR Y=4 TO 8
450 READ EB(SfYP3)
460 DATA 0.9517,1.0383,1I.3776P1.832&'2,l598
470 NEXT Y
480 FOR Y =5 TO 7
490 READ EBlf YY3)
2D DAT Y1 3776P1*4160*.1.6178

520 Elf 79693) x 1,6173
530 FOR Y a 0 TO 10
540 READ Elf IY,)

* 550 DATA 1.3548,1464,1.2442,1,54221.36,712B1.4302Y,116280.95164O,818840.7726NEXT Y
I FOR Y 1 TO 10

580 READ E8(2,Y,2)
590 DATA 1.2442,O.9695,1.0875?,440,1.5865,1.4180t,115960.9330,7841907316
600 NXT Y

62 DEB(391?)
6N TA1.08 SY.567i,101',1,55251.627,1,4612Y,126451.12641.0796

60NEXTY60FORY z 3 TO 1
* 700 REBE(4tYt2)

10DTA l.1. 573PI ,1 7713442.199??,6Os97 1?17968585
~Y TO 9

a4 EXD D(642)

DTA 1.7734,1,591,1.5956 p.7071
y

7,792) =1,5946
Y x 0 TO1)9

DTA Q.O5077,.532O4 '.64ol, ,73,0,9486,0.7105t, t.562 5015,0.4972
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FRY0 TO 10 DT

0 FMRY aITO 10
86 REA EB(2fYpI) 4Os,3..Ui8I3072

97 DATA
No NDEXT Y
990 FRl 4 TO 10
101 DATA 1,2.,1M,01PI775IX 1.42i~l
102 NUT y

100DATA 196~.53157~.98222
100 PUT y
107 FORY z 4TO 1
1060 REA EB(7sY'1
1010 DATA 157~.38116
100 NEXTY
1120 FOR Y c5TO 0
1130 RWA ED(0PY,0
1150 DATA 1096iO.5135174 ,,4I,1,76,9753e49 ,2.47O308,.35
106 N15EXT Y
1160 FOR Y = 0 TO 10
1170 READ E(1Ypl)
1180 DATA I,,1749728tX6
1110 EB(8t71)=11Y
120 FOR Y 10TO 10
1210 READ E(2iYF0)

1260 'DATA 1Y.5M4O,375P.h852.656,.316,208631.964..837,179V
1160 FOR Y =3 TO 10
1190 READ EBX4rYP0)
1300 DATA 0.2685P,15792,2,27679.6042,66.99,2.86..289Pf
1310 NUT T
I 32 FOR Y z ITO10
1330 READ ED(5vfYt0) ,134 DATA 2.76i.9v!19322.95,.6y-319 I43

1360 rY=2Mroo
* 1370 REA EB(6Y0)

1380 DATA 1.93402..51&.48521.750i2.207i2p&.073,2641B9il77
1390 NEXT Y
1400 FORY = 3TO 1
I 41 REA D (7,1,0)

1440 N8,w0 y 09
1450 FOR Y=84 T 0
1600 RN ~ 4'LAD C!AINiA520
1610 DAA 52,2611996 .ILL2 MP267DZ3139P3.63
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F I LLBZ2

,. 90 RM FIUZE 3
II Rm 1 I, WIN ZONE,

150 E i EXY,Z)< >0TMe 190
160 AXYZ)- E1(X9Z0Y)
7 &F EI(XYrZ)( >< THEN 190
lop E XYZ) = EpZfzyX)UT
210 NINUTEADOF3/48U

FRX a 0 TO to
F O Y =0 To 10
FOR Z : 0 TO 10

250 IF EB(XYZ) < > 0 TEN 280
260 EDXYsZ) z EXIO - YIO - XP1O - Z)
280 IEXTZ

2" NEXT Y
FIN T M9"ENDO 6/48 Us"

320 FOR X = 0 TO 10
Y 0TO 1

3 50 Y:Z) < > 0 THEN 380
E ,1 Z) F-.B(YpX'Z)

385 NEXT YA 390 NEXT X
400 PRINT 'END OF 12/ /4KBZOR 1/8CDE
410 FOR X =0TOX10
412 FOR Y c 0 TO 10
414 FOR Z 0 TO 10
416 IF EB(X2YZ) < > 0 TOE 420

*418 PRINT EB('X','Y','Z')'
420 MEXT Z
422 NUTY
424 WEXTX
500 =S CHR$ ()' REM CTRL-D
510 PRINT DS;'O!E CMJ.EBA6'
520 PRINT DS;'DELL.TE cu "
530 PRINT DPSVI CUDEBAN1'

50PRINT 00021MITE CUDEBAND'
50 FOR X : 0 TO 1O560FOR Y = 0 TO 10

570 FOR Z: 0 TO 10
4 rPRE (X#YYZ)

600 NEXT Y
610 NwT X
620 PRINT DCL.OSE CUBERA'

ri;

.V
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ZENER2

100 REXZDER2
110 DIMNSION
112 1MK(2)
114 DIN 02)
116 DIN Y(2)

- 118 DIN 192)
120 DIN W 2)
122 DIN 9(2)
124 DINI F(2)
126 IN X'2)
128 Dil C(100)
130 )I14 9(100)
132 DIN P(100)
134 DIh X(1000)
136 DIN E(100)
210 MRINT "RETREIVE ERY B
215 PRINT a IN A CUBE (2 TIES B.Z )
220 REM RETREIE CED FILE
225 DIN ED10,10W)
23 0$ z CWs (4): REX CTRL-D
240 PRINT Ds;OPEN CUDEDA
-250 PRINT RFRAD C MUDEND'
260 FORXaOTOlO
270 FOR Y=OTO1O
Z80 FOR Z= 0 TO 10
290 INPU EKXYZ)
.i00 1CXT Z
310 NEXT Y
320 EXT X
330 PRIhT M;' CLOSEUMD
610 PRINT 'IS TIE DISK IN TIE DRIVE1?
615 INPUT AS
620 PRIhT C14I (4 ;'BLOAD CHAINA52O'
630 CAL.L 520O'DZEIER2"
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DIRZENER2
100 RDiC YPRG
05PRI199if Bi' CHIND
400 REN PARATER SECTION
405 P1 x 3,141592653
410 RERI LATTICE PARM .
415 L? a 5.64
420 LI = PI / LP
50) PRINT 'INPUT PERIODIC VECTOR K(IK(.)"
505 flIJT OH:';K(O)
.06 K(O) : K(O) t 2Ubo INIPUT 'K,=';K( 1 )
5312 Ml) a K(I) * 2
JIS INPUT 'L=';K(2)n 17 11 32 D K(2) * 2
'20 PRINT 2IMPUT INITIAL VECTOR MOII)"
525 INPUT 'H=I';KO'0)
527' ,O0) x rOO0)_t 2
530 INPUT "K='jKO{,)
532 M. 1) -z 011) t$2
05 INPUT 'L4';9O(2)
537 KO'2) : KO,2) $2
s33 PRIIIT 'GIVE (Pie OF INTEROLATIM"
539 INPUT 'OyER';0
i0 PRINT "GIVE NSE OF POINTS'
52 PRINT 'TO IE INTERMOLATED FOR'
5, PRINT 'FOM IER SERIES CALCMLATION'
515 IL = ((KO) /2) t 2 + (Xf,1) / 2) f 2 + (K(2) /2)t2)f (1/2)
5 t PRINT WITH h)--m INT (21 8 90

S55") INPUT 'I';
. 570 HO

5=172 PRINT 'DATA GI110:'
575 PRINT 'K-('K(0) / 2','K(1) / 2",'K(2) / 2')"
5 PRINT 'KO!'KO O) / 2''KO(1) I 2','K(2) /2')

595 PRINT 'ot'h
595 PRINT 'll '
-"97 IMUT 3$
603 IF :'P ', T9 610
605 GgTO 500
: RE" RMN1 oINr INTERP,
W1 PRINT 'IS TIE DISK IN TIE DRIVEl?'

614 INPUT AS
615 IF Oz 2 O 60
616 i 0:TIE 620
619 GOTO 539
620 PRI71,1T ClM$ (4) 'DLOAD CHAIMPA, '
630 CALL 520'P2A3RM2
-40 FRINT CIR$ (4);'GOA CHAIN

*650 C4LL 520'PARA2ND'

4

! ..
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PARA3RD2
1 RE PA ADgLIOE IHTERP.3RD
10 PRINT NPARA3RD CHAIED

2 E-F FNB3,'X)s ABS(X- 5$(-t IN (X/10))-1O$ INT(X/IO))
210 FOR I=0 TO H-1
212 E) z 0
2210 X(I) I t KL / (A - 1) S LI
230 FORJT0 02

: 235 REM Y(J) IS A POINT OF INTERPO.ATION
240 Y(J)" 10 s (K(J) I (II - 1) + KO(J))
245 PEN W J) CLOSEST POINT
15 U:J) = INT (Y(J)) + INT (1 2 + Y(,) - INT (Y(J)))

M'9 XJ) Y(J) - WJ)
260 N4EXT
'62 W1 = F B(;W0))
d'4 92 = I BNVR1))

Z. W3 = FI B(121))
469 E = EYPU,2,W)
9"43 IF X 0) "> 0 THEN 27622A1 = -1!
2 GOTO 273
,6 Al = I

273 IF Xl) > 0 ME 214
230 A2 = -I
22 GOTO 286
M-4 42 = 1
21 IF Y2) > 0 THEN 292

48A3 -
.:.90 ..TO, 310
_2 A3 = I

3 = F411, .0 ) + 1)!1!3 6- = FMt B1, ,) + I)
3J:= FN BW)- )

3 1'5 U? z FNH XM2 - I )
i 16 VI = FN B(IO) + AI)
317V2= FBWl)+A2)
313 V3 = FN 0(192) + A)
319 U, 4= FN 810) + 2 A)
3 bV 5 = FNI YU1) + 2 A2)
3 21 6 = RM B(W 2) + 2 $ A3)
330 A:0) = ((4 $ Al + 2) S (EX ,YUr2D3) - E) + (2 - 4 g Al) * (£ i7@',.) - E) * E - £V4,W)) / 6 / Al
332 IV0) = (EY3.4Y2,43) + EW7,4243)) / 2 - E
.3t ".0) = ( - (2 + Al) S (EMM4,W2,i3) - E) + (Al - 2) $ (EX97,42,W3) - E) - E + E0(V4,42,3)) / 6 / Al
340 AI) 1 ((4 A2 + 2) S (M(9,5,l3) - E) + (2 - 4 $ A2) 9 (EC WI,8,W) - E) + E - ElWI,0403)) / 6 / A2
342 1) = (EI VSW3) + QWIV8.3)) / 2 - E
344 G(1 = ( - (2 + A2) A S (E I,,W3) - E) + (2 - 2) * (EBlpIUd3W3) - E) -E + EYIVSW)) / 6 A2
351 A(2) ((4 $ A3 + 2) t (EB(UIW2tW) - E) + (2 - 4 t A3) $ (EYM,1,V2,V9) - E) + E - ED(WIW2,V6)) / / 1A3
352 Y.2) = (E]K(Hl12,W6) + EY yW,2,W9)) / 2 - E
354 G(2) = ( -(2 + A3) * (0(HIW2YU6) - E) + A3 - 2) S (DVI,W2,W) - E) - E + B(WI,42,V6)) / 61 A3
360 H = EB(VIV2,t3) - EB(VpI,2,W3) -EBCV1,V2,03) + E
362 L z E V42,W3) - EBV4i2,W3) -ED(IV2,93) + E
364 H= ED('I,V5M93) -EX(VIW2,43) - 0'( UIfIP,) + E
370 F(2) z Al t A2 t(3 t H - (L + N) / 2)
2.1) ztA2 ( L/2-H)

374 12) A $ (N / 2-H)
38'1 H= E ("J14243) - EYWVIW2,V3) - EYV.2,4r3) + E
392 L = E0,442413) - EYWU'44I2,43) -EYUM,2,t3) + E
394 = EP.I' 1,W2,V6) - EB0lUt2,V3) - EN(U1,W2,V6) + E
390 MC) Al t A3 (3 % H - L + N) / 2)
392 I,5) A3 (I L / 2 - H)
394 36) z Al I (/ 2 - H)
400 H = E .' ,tV2'3) -D UlfV2,3) - EY, , V3) + E
402 L: E3= , 1,206) - E Ulpt'243) - EDU1l ,2,V6) + E
4"; N D(U1,L'VU r53) -ED19,2,43) - EO(V1V5pU3) + E
410 F(O) = A3 I A2 X (3 t H -(L + N) / 2)
412 W3) x A2 I (L / 2 -H)

430 .1~V2,3) -EB(l,2,3 E - ERWlV92,3) + 2 t E - F(O) 8 A2 Q A - PCI) t Al I A3 - F(2) t Al t
A2
H.327) (H7)- A S 2) + H.6)) - A2 S (I) +3)) -A3 S (4) + H(5)))/ A A2 A3

50'a FO J z0 ID2
VU EU) + 41,J) t DJ) + 1(4) S D', ) t 2+ G, J) D' J() t 3

B3 EXT J
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4 E(IP = E(I) H 1) t D',O) t 2 * D'l) + Hl2) t D(O) t X) t2 + F(2) * D() I) I

59 E)= E1) " H5) O) f 2 t Y(,2) + W6) * D(O) S 12) t 2 + F(1) * D(O) t D(2)
512 E(I) : E(I) + F(O) t 1) t 2) + H) t D(l) D(2) t 2 + H(4) N) t 2 t D(2)516 ED! = E-' D +H;,7 ) I Y0) * DXI) S D)(2)

" S O PRINTf T1(15 )--ElI)

15 PRINT "S THE D9I% IN T E DIIVEl?'" 595 I)J?'JT AS

6 10 CA- a 0' DISPATVH2'

!.

p

I
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If,) PEN FOURIERCA.cUTIo FOURSERIE S2
110 PRINT "FOJRSERIES CDAIMED'
.... B. 20
" P1 = 341592653

157 A= KL$ PI / LP
14O PRINT 'MM.?UTE R(1) FROMIt1.1 INF"UT "Iz*;E%
166 PRINT OTO"
163 IN.UT 31=';F
169 IF E7 m > 0 TEN 200
70 1F Fz > 100 TH1N 160S '72 R(0)) -
1,;3 FOR N = 0 TO N - 2t,5R()=R(O) f (XH +" 1) - %(N)) (EMN + E(N + V)) 2
178 EXT N
i9 RM0 R(0) / A
lO E% = I182 PIRIMT "R(O) '(0)

.:.;I r EZ TO F%
. K PI t2 / A" i}) = 0

214 P,'. - '
1,--; :tR, 0 TO M -2

L N +125 B (E(L) -E(M)) / (X(L) - X(M))
'3 (E(N) * X(L) - E(L) S X(N)) I (X(L) - X(N))

L35. CD + X(L) t D
40F CD + X(N) $ D

'5 C( r C(K) + C SIN (H t X(L))
. , C(K - F $ SIN (H S X(N))
255 C'r) = (K) + D / H SI ( COS (H S X(L)) - COS (H S X(N)))
, S( K ): SK)- C COS(HSX(L))
285 S(K) = S(K) + F S COS (H X(N))2"90 SK) = SW + D / H t (SIN (H t X(L)) - SIN (H t X(N)))
30) NEXTN
310 5(K) = 5(K) / K / Pi
315 C(K) = C(K) / K / PI
320 R(K) = ((K) 2 + C(K)f 2) ( / 2)
325 PRINT "S(K')O'S(K)
326 PRINT 'C('K' )='C(K)
327 PRINT "R(,K')='R(K)
3*30 NEXT K
350 PRIINT "IS THE DISK IN THE DRIVE 1?"
360 INPUT AS
4M) PRINT CH*P$ ( ;,OAD CAIAM20"
410 CALL 520'DISPATCH2'

";-, ". -i .'1 , .' '. ." ..,, " ' -' .I
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130RE~DISATC PPU'~DI S PATCH 2
I'll HIME
114 PRINTr 3D!SDATC4f CAINED,
V.10 PPINT IDURJIER C0(O ENT CO~L9TED

106 FOR I = TO 100
10.9 IF P.M 2 0THRN 112
I 11 0 PRINT'1 R(l),

112 EVT I
10 PRINT 'CHOS TME OET PROCESS'

* 50 PRINT 0<1\? IS B.VDM
S16.3 FRI T 9<111 is PAH1MLOT"
*170 PRINT 'D3 IS FOURIER SERIES COIMUATIOW

130 PRIN1,T '<4> IS F&M~RINT'
190 PRINT '<5> 1S FOURPLOT8
20 PRNT'6> IS i OUT 0E K AND KO'
2.0 PRINT *(7>SAVES FOUR IN F(YURFILE'

Pt5 PIOT '<TfSAVES D4NB IN BAWOILE'
.511 INPUT 'CHOIcE:';CJI
2155 D TNT 'I~s TLC DISK IN TIE DRIVEVO
tc5, FR~IJ A
260 IF CH =ITEN 35
270 IF CR =21EN 150
-80 IF CH =3 NE 370

*290 IF CH =4 THEN 390
J0n IF Cl=5 TOEN390
3!.') IFCM = 6 ME 40

* 320 F C4 =7 TEN410
330 IF CH =B H E 4 2O
i!.0 PRIeT C"~ (4)'DLOAD CHAINvA520
M-5 "41L 5210'NDORINT2'
"A 0Pf DI UT . (4;'BtLAflCHINMTUD
35 cAL 020'PAMOOLOT20
37 0 INT CHR$ (4)i'BLAB CHAIN ,A520'

175 CALL 5A.O"FOURSEWIES2'
3 .PRTIT CHOM (4 )"BLOAD CHAIN rA520'
385 tZL 52'F4YRPRIHT2'

*30 PO RINT MHR (4)LOAD CHAIN rA520
Y5 "'ALL 520*FOUWLGT22
40~ PRINT CHR$ M)'BLOAD CHAIN #AM"O
445 CALL 520'DIRZENER.2*

4 'PIT C$ 4;LOAD CHAINtA520'
415 CALL 5' O'FOP.FILE2'
420 PRIhT CWR,$ (4)BLOAD CHWNYA52O10
425 CAll 520IBANDILE2'
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5 BIN EIoC00) ZENER2F
5' DIM R(100)
55 DIM 3(100)
59 DIM C(00)
A0 DIM X(1I00)
6 LO: 5,64
6 DIH Y.(2)

.00 P, I.'T 'RETRIEVE BAMN1 H K L HO KO ID"
102, IPUT "H';H
I-O HPPUT 'K';K
I104 TiPU "'I;Lt!., ? i =, (H t 2 +K t 2 +L t 2) t (Q/2)

. "06 IN!.T "H3;HO
A7 IN?UT *KO';KO

Lot If.T 'LO';LOt 0 ", Y(1) = I t K
110 PRINT 'GIVE N'
112 IPT. *Mx';M
114 A$ z AND" + TRs (A) f '
!16A$ A$+ STR$(H)+''+ STR$(K) '++ STR(L)+1!SA$:A$+ STR$(HO)+'' STR$(KO) +' STR$$(LO)120 PRINT @FILE: 'A$
125 PRINT "THIS FILE IS,
130 PRINT 'ON WHICH DRIVE.'
140 INPUT 'DRIVE *';OR
141 B$ = STRS (2)
142 IF DR : 1 I1TO 150
143 z STRs (1)
150 t$ = CH$ (4): EM CTRL-D
15 C = A + ',6D' + S$ (DR)
160 PRINT $' 0"EN'C$
170 PRINT D);'RE'A$
180 INPUT H
195 IPUT I
190 FnR I=0TOM-1
200 IIPUT K
210 INPUT E(I)
20 NEXT I
230 PRINT D$'CLOSE'A$
240 P1 = 3,14159265
242 LI = PI / LP
2'A FOR I = 0 TON- I
246 ( ) I t1 vl / (M-i) S LI2L .9 -" I
2 f - K(O) :H 9 2
20.4, (.2): L 2
2J,.SY0) z HD $2
': , 1I) z KO $2

260 V0O2) z LO t 2
5' PRINT 'IS TIE DISK IN DRIVEl'
510 INPUT Al
520 PRINT CH$ (4);'BLOAD CHAIN,A"20,S6,D'D$
530 CALL 520'DISPATCH2'

>. - •I
1I
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